Nullity theorem

Source: Wikipedia, the free encyclopedia.

The nullity theorem is a mathematical

kernel. The theorem was proven in an abstract setting by Gustafson (1984), and for matrices by (Fiedler & Markham 1986
).

Partition a matrix and its inverse in four submatrices:

The partition on the right-hand side should be the transpose of the partition on the left-hand side, in the sense that if A is an m-by-n block then E should be an n-by-m block.

The statement of the nullity theorem is now that the nullities of the blocks on the right equal the nullities of the blocks on the left (Strang & Nguyen 2004):

More generally, if a submatrix is formed from the rows with indices {i1, i2, …, im} and the columns with indices {j1, j2, …, jn}, then the complementary submatrix is formed from the rows with indices {1, 2, …, N} \ {j1, j2, …, jn} and the columns with indices {1, 2, …, N} \ {i1, i2, …, im}, where N is the size of the whole matrix. The nullity theorem states that the nullity of any submatrix equals the nullity of the complementary submatrix of the inverse.

References

  • Gustafson, William H. (1984), "A note on matrix inversion", Linear Algebra and Its Applications, 57: 71–73,
    ISSN 0024-3795
    .
  • Fiedler, Miroslav; Markham, Thomas L. (1986), "Completing a matrix when certain entries of its inverse are specified", Linear Algebra and Its Applications, 74 (1–3): 225–237, .
  • .