Odd number theorem
This article may need to be rewritten to comply with Wikipedia's quality standards. (January 2020) |
![]() | This article includes a improve this article by introducing more precise citations. (August 2009) ) |
The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology.
The theorem states that the number of multiple images produced by a bounded transparent lens must be odd.
Formulation
The gravitational lensing is a thought to mapped from what's known as image plane to source plane following the formula :
.
Argument
If we use direction
However, only in some specific directions , will the bent light rays reach the observer, i.e., the images only form where . Then we can directly apply the Poincaré–Hopf theorem .
The index of sources and sinks is +1, and that of saddle points is −1. So the Euler characteristic equals the difference between the number of positive indices and the number of negative indices . For the far field case, there is only one image, i.e., . So the total number of images is , i.e., odd. The strict proof needs Uhlenbeck's
References
- Chwolson, O. (1924). "Über eine mögliche Form fiktiver Doppelsterne". Astronomische Nachrichten (in German). 221 (20). Wiley: 329–330. ISSN 0004-6337.
- Burke, W. L. (1981). "Multiple Gravitational Imaging by Distributed Masses". The Astrophysical Journal. 244. IOP Publishing: L1. ISSN 0004-637X.
- McKenzie, Ross H. (1985). "A gravitational lens produces an odd number of images". Journal of Mathematical Physics. 26 (7). AIP Publishing: 1592–1596. ISSN 0022-2488.
- Kozameh, Carlos; Lamberti, Pedro W.; Reula, Oscar (1991). "Global aspects of light cone cuts". Journal of Mathematical Physics. 32 (12). AIP Publishing: 3423–3426. ISSN 0022-2488.
- Lombardi, Marco (1998-01-20). "An application of the topological degree to gravitational lenses". Modern Physics Letters A. 13 (2). World Scientific Pub Co Pte Lt: 83–86. ISSN 0217-7323.
- Wambsganss, Joachim (1998). "Gravitational Lensing in Astronomy". Living Reviews in Relativity. 1 (1): 12. PMID 28937183.
- Schneider, P.; Ehlers, J.; Falco, E. E. (1999). Gravitational Lenses". Astronomy and Astrophysics Library. Springer. ISBN 9783540665069.
- Giannoni, Fabio; Lombardi, Marco (1999). "Gravitational lenses: Odd or even images?". Classical and Quantum Gravity. 16 (6): 1689–1694. S2CID 250827307.
- Frittelli, Simonetta; Newman, Ezra T. (1999-04-28). "Exact universal gravitational lensing equation". Physical Review D. 59 (12): 124001. S2CID 248125.
- Perlick, Volker (1999). "Gravitational Lensing from a Geometric Viewpoint". Einstein's Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers. Lecture Notes in Physics. Vol. 540. pp. 373–425. ISBN 978-3-540-67073-5.
- Perlick, Volker (September 2004). "Gravitational lensing from a spacetime perspective". Living Reviews in Relativity. 7 (1): 9. PMID 28179867.