Order-3-4 heptagonal honeycomb

Source: Wikipedia, the free encyclopedia.
Order-3-4 heptagonal honeycomb
Type Regular honeycomb
Schläfli symbol {7,3,4}
Coxeter diagram

=
Cells {7,3}
Faces heptagon {7}
Vertex figure octahedron {3,4}
Dual {4,3,7}
Coxeter group [7,3,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-4 heptagonal honeycomb or 7,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

Geometry

The Schläfli symbol of the order-3-4 heptagonal honeycomb is {7,3,4}, with four heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octahedron, {3,4}.


Poincaré disk model
(vertex centered)

One hyperideal cell limits to a circle on the ideal surface

Ideal surface

Related polytopes and honeycombs

It is a part of a series of regular polytopes and honeycombs with {p,3,4}

vertex figures
:

{p,3,4} regular honeycombs
Space S3 E3 H3
Form Finite Affine Compact Paracompact Noncompact
Name
{3,3,4}


{4,3,4}




{5,3,4}


{6,3,4}




{7,3,4}

{8,3,4}




...
{∞,3,4}




Image
Cells
{3,3}

{4,3}

{5,3}

{6,3}

{7,3}

{8,3}

{∞,3}

Order-3-4 octagonal honeycomb

Order-3-4 octagonal honeycomb
Type Regular honeycomb
Schläfli symbol {8,3,4}
Coxeter diagram

=

Cells {8,3}
Faces octagon {8}
Vertex figure octahedron {3,4}
Dual
{4,3,8}
Coxeter group [8,3,4]
[8,31,1]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-4 octagonal honeycomb or 8,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an octagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-3-4 octagonal honeycomb is {8,3,4}, with four octagonal tilings meeting at each edge. The vertex figure of this honeycomb is an octahedron, {3,4}.


Poincaré disk model
(vertex centered)

Order-3-4 apeirogonal honeycomb

Order-3-4 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,3,4}
Coxeter diagram

=

Cells {∞,3}
Faces apeirogon {∞}
Vertex figure octahedron {3,4}
Dual
{4,3,∞}
Coxeter group [∞,3,4]
[∞,31,1]
Properties Regular

In the geometry of hyperbolic 3-space, the order-3-4 apeirogonal honeycomb or ∞,3,4 honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-3 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-3-4 apeirogonal honeycomb is {∞,3,4}, with four order-3 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an octahedron, {3,4}.


Poincaré disk model
(vertex centered)

Ideal surface

See also

References

External links