Pointwise
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the
Pointwise operations
Formal definition
A binary operation o: Y × Y → Y on a set Y can be lifted pointwise to an operation O: (X→Y) × (X→Y) → (X→Y) on the set X → Y of all functions from X to Y as follows: Given two functions f1: X → Y and f2: X → Y, define the function O(f1, f2): X → Y by
Commonly, o and O are denoted by the same symbol. A similar definition is used for unary operations o, and for operations of other arity.[citation needed]
Examples
The pointwise addition of two functions and with the same domain and codomain is defined by:
The pointwise product or pointwise multiplication is:
The pointwise product with a scalar is usually written with the scalar term first. Thus, when is a scalar:
An example of an operation on functions which is not pointwise is convolution.
Properties
Pointwise operations inherit such properties as
Componentwise operations
Componentwise operations are usually defined on vectors, where vectors are elements of the set for some natural number and some field . If we denote the -th component of any vector as , then componentwise addition is .
Componentwise operations can be defined on matrices. Matrix addition, where is a componentwise operation while matrix multiplication is not.
A tuple can be regarded as a function, and a vector is a tuple. Therefore, any vector corresponds to the function such that , and any componentwise operation on vectors is the pointwise operation on functions corresponding to those vectors.
Pointwise relations
In
- A projection operator) with the additional property that idA ≤ c, where id is the identity function.
- Similarly, a projection operator k is called a kernel operatorif and only if k ≤ idA.
An example of an
Notes
References
For order theory examples:
- T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, 2005, ISBN 1-85233-905-5.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott: Continuous Lattices and Domains, Cambridge University Press, 2003.
This article incorporates material from Pointwise on