Preclosure operator

Source: Wikipedia, the free encyclopedia.

In

idempotent. That is, a preclosure operator obeys only three of the four Kuratowski closure axioms
.

Definition

A preclosure operator on a set is a map

where is the power set of

The preclosure operator has to satisfy the following properties:

  1. (Preservation of nullary unions);
  2. (Extensivity);
  3. (Preservation of binary unions).

The last axiom implies the following:

4. implies .

Topology

A set is closed (with respect to the preclosure) if . A set is open (with respect to the preclosure) if its complement is closed. The collection of all open sets generated by the preclosure operator is a topology;[1] however, the above topology does not capture the notion of convergence associated to the operator, one should consider a pretopology, instead.[2]

Examples

Premetrics

Given a

premetric
on , then

is a preclosure on

Sequential spaces

The

sequential closure
operator is a preclosure operator. Given a topology with respect to which the sequential closure operator is defined, the topological space is a sequential space if and only if the topology generated by is equal to that is, if

See also

References

  1. ^ Eduard Čech, Zdeněk Frolík, Miroslav Katětov, Topological spaces Prague: Academia, Publishing House of the Czechoslovak Academy of Sciences, 1966, Theorem 14 A.9 [1].
  2. ^ S. Dolecki, An Initiation into Convergence Theory, in F. Mynard, E. Pearl (editors), Beyond Topology, AMS, Contemporary Mathematics, 2009.
  • A.V. Arkhangelskii, L.S.Pontryagin, General Topology I, (1990) Springer-Verlag, Berlin. .
  • B. Banascheski, Bourbaki's Fixpoint Lemma reconsidered, Comment. Math. Univ. Carolinae 33 (1992), 303-309.