Tail rotor

Source: Wikipedia, the free encyclopedia.
Traditional tail rotor of an Sikorsky S-61

The tail rotor is a smaller

main rotor. Without the tail rotor or other anti-torque mechanisms (e.g. NOTAR
), the helicopter would be constantly spinning in the opposite direction of the main rotor when flying.

Tail rotors are simpler than main rotors since they require only collective changes in pitch to vary thrust. The pitch of the tail rotor blades is adjustable by the pilot via the anti-torque pedals, which also provide directional control by allowing the pilot to rotate the helicopter around its vertical axis. Its drive system consists of a

flight controls fail. About 10% of the engine power goes to the tail rotor.[1]

Design

The tail rotor system rotates airfoils, small wings called blades, that vary in pitch in order to vary the amount of thrust they produce. The blades most often utilize a

carbon fiber composite. Tail rotor blades can be made with both symmetrical and asymmetrical airfoil construction. The pitch change mechanism uses a cable control system or control tubes that run from the anti-torque pedals in the cockpit
to a mechanism mounted on the tail rotor gearbox. In larger helicopters, the pitch change mechanism is augmented by a hydraulic power control servo. In the event of a hydraulic system failure, the mechanical system is still able to control the tail rotor pitch, though the control resistance felt by the pilot will be considerably greater.

The tail rotor is powered by the helicopter's main power plant, and rotates at a speed proportional to that of the main rotor. In both piston and turbine powered helicopters, the main rotor and the tail rotor are mechanically connected through a

autorotation
, the momentum of the main rotor continues to power the tail rotor and allow directional control. To optimize its function for forward flight, the blades of a tail rotor have no twist to reduce the profile drag, because the tail rotor is mounted with its axis of rotation perpendicular to the direction of flight.

Reliability and safety

The tail rotor of a Bell 206 protected from ground strikes by a skid plat

The tail rotor and the systems that provide power and control for it are considered critically important for safe flight. As with many parts on a helicopter, the tail rotor, its transmission, and many parts in the drive system are often life-limited, meaning they are arbitrarily replaced after a certain number of flight hours, regardless of condition. Between replacements, parts are subject to frequent inspections utilizing visual as well as chemical methods such as fluorescent penetrant inspection to detect weak parts before they fail completely.

Despite the emphasis on reducing failures, they do occasionally occur, most often due to hard landings and

autorotate
and make an emergency landing with significant forward airspeed, which is known as a running landing or roll-on landing.

The tail rotor itself is a hazard to ground crews working near a running helicopter. For this reason, tail rotors are painted with stripes of alternating colors to increase their visibility to ground crews while the tail rotor is spinning.

Alternative technologies

There have been three major alternative designs which attempt to solve the shortcomings of the tail rotor system.

The first is to use an

Eurocopter (now Airbus Helicopters) for its Dauphin-series utility helicopters. The enclosure around the fan reduces tip vortex losses, shields the blades from foreign object damage, protects ground crews from potential hazard of an openly spinning rotor, and produces a much quieter and less turbulent noise
profile than a conventional tail rotor. The ducted fan uses more numerous shorter blades, but otherwise works in very similar thrust principles to a conventional tail rotor.

MD Helicopters 520N NOTAR

McDonnell Douglas developed the NOTAR (NO TAil Rotor) system, which eliminates having any rotating parts out in the open. The NOTAR system uses a variable pitch ducted fan driven by the helicopter's powerplant, but the ducted fan is mounted inside the fuselage ahead of the tail boom, and the exhaust passes through the tail boom to the end, where it is expelled out one side. This creates a boundary layer which causes the downwash from the main rotor to hug the tail boom according to the Coandă effect. This creates a force which cancels out the main rotor torque and provides directional control. The advantages of the system are similar to the Fenestron system discussed above.

There are at least four ways to eliminate the necessity of a tail rotor altogether :

  • CH-47 Chinook
    .
The
fixed wings. This allows the rotors to serve instead as propellers
when flying forward at full speed.

See also

References

[3]

  1. ^ Dave Jackson. "Flight Dynamics - Definitions & Algorithms Archived 2016-11-01 at the Wayback Machine" UniCopter, 29 January 2013. Accessed: 19 November 2013.
  2. .
  3. . FAA-8083-21.