Two-point tensor

Source: Wikipedia, the free encyclopedia.

Two-point tensors, or double vectors, are

Piola–Kirchhoff stress tensor
.

As with many applications of tensors,

Einstein summation notation
is frequently used. To clarify this notation, capital indices are often used to indicate reference coordinates and lowercase for present coordinates. Thus, a two-point tensor will have one capital and one lower-case index; for example, AjM.

Continuum mechanics

A conventional tensor can be viewed as a transformation of vectors in one coordinate system to other vectors in the same coordinate system. In contrast, a two-point tensor transforms vectors from one coordinate system to another. That is, a conventional tensor,

,

actively transforms
a vector u to a vector v such that

where v and u are measured in the same space and their coordinates representation is with respect to the same basis (denoted by the "e").

In contrast, a two-point tensor, G will be written as

and will transform a vector, U, in E system to a vector, v, in the e system as

.

The transformation law for two-point tensor

Suppose we have two coordinate systems one primed and another unprimed and a vectors' components transform between them as

.

For tensors suppose we then have

.

A tensor in the system . In another system, let the same tensor be given by

.

We can say

.

Then

is the routine tensor transformation. But a two-point tensor between these systems is just

which transforms as

.

Simple example

The most mundane example of a two-point tensor is the transformation tensor, the Q in the above discussion. Note that

.

Now, writing out in full,

and also

.

This then requires Q to be of the form

.

By definition of tensor product,

So we can write

Thus

Incorporating (1), we have

.

See also

References

  1. ^ Humphrey, Jay D. Cardiovascular solid mechanics: cells, tissues, and organs. Springer Verlag, 2002.