User:Holstem1/Inquiry-based learning

Source: Wikipedia, the free encyclopedia.

Social studies and history[edit]

The College, Career, and Civic Life (C3) Framework for Social Studies State Standards was a joint collaboration among states and social studies organizations, including the National Council for the Social Studies, designed to focus social studies education on the practice of inquiry, emphasizing "the disciplinary concepts and practices that support students as they develop the capacity to know, analyze, explain, and argue about interdisciplinary challenges in our social world." The C3 Framework recommends an "Inquiry Arc" incorporating four dimensions: 1. developing questions and planning inquiries; 2. applying disciplinary concepts and tools; 3. evaluating primary sources and using evidence; and 4. communicating conclusions and taking informed action. For example, a theme for this approach could be an exploration of etiquette today and in the past. Students might formulate their own questions or begin with an essential question such as "Why are men and women expected to follow different codes of etiquette?" Students explore change and continuity of manners over time and the perspectives of different cultures and groups of people. They analyze primary source documents such as books of etiquette from different time periods and form conclusions that answer the inquiry questions. Students finally communicate their conclusions in formal essays or creative projects. They may also take action by recommending solutions for improving school climate.

Robert Bain in How Students Learn described a similar approach called "problematizing history". First a learning curriculum is organized around central concepts. Next, a question and primary sources are provided, such as eyewitness historical accounts. The task for inquiry is to create an interpretation of history that will answer the central question. Students will form a hypothesis, collect and consider information and revisit their hypothesis as they evaluate their data.

Ontario's kindergarten program[edit]

After Charles Pascal's report in 2009, the Canadian province of Ontario's Ministry of Education decided to implement a full day kindergarten program that focuses on inquiry and play-based learning, called The Early Learning Kindergarten Program. As of September 2014, all primary schools in Ontario started the program. The curriculum document outlines the philosophy, definitions, process and core learning concepts for the program. Bronfenbrenner's ecological model, Vygotsky's zone of proximal development, Piaget's child development theory and Dewey's experiential learning are the heart of the program's design. As research shows, children learn best through play, whether it is independently or in a group. Three forms of play are noted in the curriculum document, pretend or "pretense" play, socio-dramatic play and constructive play. Through play and authentic experiences, children interact with their environment (people and/or objects) and question things; thus leading to inquiry learning. A chart on page 15 clearly outlines the process of inquiry for young children, including initial engagement, exploration, investigation, and communication. The new program supports holistic approach to learning. For further details, please see the curriculum document.

Since the program is extremely new[as of?], there is limited research on its success and areas of improvement. One government research report was released with the initial groups of children in the new kindergarten program. The Final Report: Evaluation of the Implementation of the Ontario Full-Day Early-Learning Kindergarten Program from Vanderlee, Youmans, Peters, and Eastabrook (2012) conclude with primary research that high-need children improved more compared to children who did not attend Ontario's new kindergarten program. As with inquiry-based learning in all divisions and subject areas, longitudinal research is needed to examine the full extent of this teaching/learning method.

Learning to read in the Netherlands[edit]

Since 2013 Dutch children have the opportunity of inquiry learning to read. The program is from the Dutch developmental psychologist Ewald Vervaet, is named Ontdekkend Leren Lezen (OLL; 'Discovery Learning to Read') and has three parts. As of 2019, OLL is only available in Dutch.

OLL's main characteristic is that it is for children who are reading mature. Reading maturity is assessed with the Reading Maturity Test. It is a descriptive test that consists of two subtests. We present here the essentials.

In the writing test ('schrijfproef') the child writes his name, the words 'mam' and 'dad' and some names more, which he happens to know. In the reading test ('leesproef') the tester makes new, transparent (common, rare or nonsense) words which the child then tries to read. Testwords consist of three or four letters.

Suppose, Tim writes TIM, MAM, DAD and SOFIE (Tims sister). Good testwords are SIT, (nonsense word) FOM and MIST. When Tim reads SIT as 's, i, t', he only analyses the sounds of the word. He is definitely not reading mature then.

However, when Tims reaction on SIT is first 's, i, t' and then 'sit', he analyses-and-synthesizes. He then is reading mature of almost so for there are some conditions more such as analysing-and-synthesizing of words of four letters and absence of mirror writing in the writing test.

If a child is reading mature, he can start with OLL. The essential element of OLL are the discovering pages. See the discovering page for the letter 'k' below. The Dutch word 'kat' is the English word 'cat'; Dutch 'slak' is English 'snail', Dutch 'kers' is English 'cherry' and Dutch 'vork' is English 'fork'.

In earlier chapters the child has discovered the letters 'a', 't', 's', 'l', 'e', 'r', 'v' and 'o' in similar discovering pages. Consequently, the novelty in the discovering page for the letter 'k' is the figure 'k': obviously, the figure 'k' is a letter in the Dutch alphabet, but how does 'k' sound? The child finds this out by making hypotheses: is the one animal perhaps a snail, 'slak' in Dutch? If so, the word below sounds as /slak/; the child reads 's, l, a, k; slak'; hypothesis confirmed! Similarly with 'k, a, t; kat', 'k, e, r, s; kers' and 'v, o, r, k; vork'. Consequently, the hypothesis 'That is a snail' has broadened itself to the hypothesis that 'k' sounds like /k/ as twice in the English word 'clock', and that hypothesis had proven to be tenable. Not just that: the process to find out how 'k' sounds, is rightly called a discovering process and Discovering Learing to Read clearly is a form of discovery or inquiry learning.

Discovery Learning to Read (DLR) in English[edit]

Phonemically speaking the Dutch language is much less transparent than almost completely transparent languages like Italian, Finnish and Czech, but much more transparent than languages like English and Danish. The classification of the British reading expert Debbie Hepplewhite (born in 1956) yields 217 letter-sound-combinations. The letter symbol 'a' for instance sounds on at least four ways: 'car', 'fat', 'saw' and 'table'. Conversely, the sound in 'table' is written on at least seven other ways: 'sundae', 'aid', 'straight', 'say', 'break', 'eight' and 'prey'. And so on.

Maybe a native speaker of English can construct enough discovering pages for all these 217 letter-sound-combinations, but the time being Discovery Learning to Read (DLR) looks only feasible with one or more auxiliary letters.

  • The very first discovering page could be with the word 'ɑnd' and would actually be a discovering page for the letters 'ɑ', 'n' and 'd'.
  • In the second discovering page the letter 'm'-/m/ is discovered with 'mɑn', 'dɑm' and eventually 'mɑd' as discovering words.
  • In the third discovering page the letter 't'-/t/ is discovered with 'mɑt' en 'ɑnt' and possibly 'tɑn' as discovering words.
  • In the fourth discovering page the letter 'e'-/e/ is discovered with 'ten', 'net', 'tent' and 'men' as discovering words.
  • In the fifth discovering page the letter 'r'-/r/ is discovered with 'rɑt', 'trɑm' and 'red' (for instance on the basis of the British/USA-flag, with an arrow near the red parts).
  • In the sixth discovering page the letter 's'-/s/ is discovered with 'stem', 'nest', 'sɑnd' and 'ɑnts'.
  • In the seventh discovering page the letter 'p'-/p/ is discovered with 'pen', 'tɑp', 'pɑn' and 'mɑp'.
  • In the eighth discovering page the letter 'i'-/i/ is discovered with 'pin', 'tin', 'pit' and 'mist'.
  • In the ninth discovering page the first auxiliary letter could be discovered: the /ai/-sound of 'my', 'pie', 'find' and 'ice', for instance with the discovering words 'night'-/nait/, 'mice'-/mais/, 'pie'-/pai/ and 'rice'-/rais/.

To make it clear to the child from the outset that 'ai' is not a standard letter but an auxiliary letter, this is told to him and this letter is presented in a different way than the standard letters, for example with a line through it and/or against a gray instead of white background: as 'ɑi', 'ɑi' or 'ɑi'.

There are two conditions for a discovering page with a non-standard letter symbol. The first is that such a letter symbol resembles the standard alphabet as much as possible. And the second condition is that in the case of a combination of letters, the child is familiar with the composing parts. With 'ɑi' both conditions are fulfilled: the parts are derived from the standard alphabet and the child knows 'ɑ' and 'i' from the first and the eighth discovering pages.

In Vervaets opinion, the aim should be to keep the number of non-standard letter symbols as low as possible. After all, whatever kind of positive purpose is aimed for with non-standard letter symbols, the child learns them for the time being and should replace them – preferably as early as possible – and thus unlearn them. The number of things to be unlearned should therefore not be greater than strictly necessary.

In later discovering pages the child discovers the correct spelling. The /ɑi/-sound has at least these six spellings:

  1. 'igh' – 'bright', 'fight', 'flight', 'high', 'knight', 'light', 'might', 'nigh', 'night', 'plight', 'right', 'sigh', 'sight', 'slight', 'thigh', 'tight';
  2. 'ie' – 'die', 'hie', 'lie', 'pie', 'tie', 'vie';
  3. 'i(nd)' – 'behind', 'bind', 'blind', 'find', 'kind', 'mind', 'rind', 'wind';
  4. 'y' – by', 'cry', 'dry', 'fly', 'fry', 'my', 'pry', 'shy', 'sky', 'spy', 'try', 'why';
  5. 'ei' – 'eider', 'eiderdown';
  6. 'i(consonant)e' – 'jibe', 'nice', 'tide', 'life', 'oblige', 'bike', 'file', 'time', 'fine', 'ripe', 'wise', 'kite', 'dive', 'size'.

Misconceptions[edit]

There are several common misconceptions regarding inquiry-based science, the first being that inquiry science is simply instruction that teaches students to follow the scientific method. Many teachers had the opportunity to work within the constraints of the scientific method as students themselves and assume inquiry learning must be the same. Inquiry science is not just about solving problems in six simple steps but much more broadly focused on the intellectual problem-solving skills developed throughout a scientific process. Additionally, not every hands-on lesson can be considered inquiry.

Some educators believe that there is only one true method of inquiry, which would be described as the level four: Open Inquiry. While open inquiry may be the most authentic form of inquiry, there are many skills and a level of conceptual understanding that the students must have developed before they can be successful at this high level of inquiry. While inquiry-based science is considered to be a teaching strategy that fosters higher order thinking in students, it should be one of several methods used. A multifaceted approach to science keeps students engaged and learning.

Not every student is going to learn the same amount from an inquiry lesson; students must be invested in the topic of study to authentically reach the set learning goals. Teachers must be prepared to ask students questions to probe their thinking processes in order to assess accurately. Inquiry-science requires a lot of time, effort, and expertise, however, the benefits outweigh the cost when true authentic learning can take place[citation needed].

Neuroscience complexity[edit]

The literature states that inquiry requires multiple cognitive processes and variables, such as causality and co-occurrence that enrich with age and experience. Kuhn, et al. (2000) used explicit training workshops to teach children in grades six to eight in the United States how to inquire through a quantitative study. By completing an inquiry-based task at the end of the study, the participants demonstrated enhanced mental models by applying different inquiry strategies. In a similar study, Kuhan and Pease (2008) completed a longitudinal quantitative study following a set of American children from grades four to six to investigate the effectiveness of scaffolding strategies for inquiry. Results demonstrated that children benefitted from the scaffolding because they outperformed the grade seven control group on an inquiry task. Understanding the neuroscience of inquiry learning the scaffolding process related to it should be reinforced for Ontario's primary teachers as part of their training.

Notes for educators

Inquiry-based learning is fundamental for the development of higher order thinking skills. According to Bloom's Taxonomy, the ability to analyze, synthesize, and evaluate information or new understandings indicates a high level of thinking. Teachers should be encouraging divergent thinking and allowing students the freedom to ask their own questions and to learn the effective strategies for discovering the answers. The higher order thinking skills that students have the opportunity to develop during inquiry activities will assist in the critical thinking skills that they will be able to transfer to other subjects.

As shown in the section above on the neuroscience of inquiry learning, it is significant to scaffold students to teach them how to inquire and inquire through the four levels. It cannot be assumed that they know how to inquire without foundational skills. Scaffolding the students at a younger age will result in enriched inquiring learning later.

Inquiry-based learning can be done in multiple formats, including:

  • Field-work
  • Case studies
  • Investigations
  • Individual and group projects
  • Research projects

Remember to keep in mind...

  • Teacher is Facilitator in IBL environment
  • Place needs of students and their ideas at the center
  • Don't wait for the perfect question, pose multiple open-ended questions.
  • Work towards common goal of understanding
  • Remain faithful to the students' line of inquiry
  • Teach directly on a need-to-know basis
  • Encourage students to demonstrate learning using a range of media

Necessity for teacher training[edit]

There is a necessity for professional collaboration when executing a new inquiry program (Chu, 2009; Twigg, 2010). The teacher training and process of using inquiry learning should be a joint mission to ensure the maximal amount of resources are used and that the teachers are producing the best learning scenarios. The scholarly literature supports this notion. Twigg's (2010) education professionals who participated in her experiment emphasized year round professional development sessions, such as workshops, weekly meetings and observations, to ensure inquiry is being implemented in the class correctly. Another example is Chu's (2009) study, where the participants appreciated the professional collaboration of educators, information technicians and librarians to provide more resources and expertise for preparing the structure and resources for the inquiry project. To establish a professional collaboration and researched training methods, administration support is required for funding.