Weywot

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Weywot
Quaoar and Weywot (left of Quaoar) imaged by the Hubble Space Telescope in 2006
Discovery[1][2]
Discovered by
Discovery date14 February 2006
Designations
Designation
(50000) Quaoar I[4]: 134 
Pronunciation/ˈwwɒt/
S/2006 (50000) 1[5]
Orbital characteristics[6]
Epoch 23 March 2008 (JD 2454549.42)[6]
13289±189 km (2023)[7]
13900±200 (2013)[6]
Eccentricity0.056±0.093 (2023)[7]
0.137±0.006 (2013)[6]
12.4311±0.0015 d (2023)[7]
12.4314±0.0002 d (2013)[6]
Inclination15.8°±0.7° (to ecliptic)
1.0°±0.7°
335°±0.7°
Satellite of50000 Quaoar
Physical characteristics
Mean diameter
200 km[8]
Albedo≈ 0.04[8]
24.7[9][a]
≈ 8.3[a]

Weywot (formal designation (50000) Quaoar I;

.

Discovery

Weywot was first imaged by the

arcseconds.[1][11]: 1547  After Brown's Hubble survey concluded in late 2006, he and his colleague Terry-Ann Suer reported their newly discovered TNO satellites to the Central Bureau for Astronomical Telegrams, which published their discovery of Weywot alongside three other TNO satellites on 22 February 2007.[10][1]

To determine Weywot's orbit, Brown reobserved Weywot with Hubble in March 2007 and March 2008.[12][13][9] Together with his colleague Wesley Fraser, Brown published the first preliminary orbit of Weywot in May 2010. Fraser and Brown were unable to precover Weywot in earlier ultraviolet Hubble images of Quaoar from 2002, either because the satellite was obscured by Quaoar or it was too faint in ultraviolet light.[11]: 1548 

Name

Upon discovery, Weywot was given a

Weywot, son of Quaoar.[14] The name of Weywot was officially announced by the Minor Planet Center in a notice published on 4 October 2009.[4]
: 134 

Orbit

Orbit diagrams of the Quaoar–Weywot system
Viewed from Earth
Viewed top-down over Quaoar's north pole

Weywot orbits Quaoar at an average distance of 13,300 km (8,300 mi) and takes 12.4 days to complete one revolution.[7]: 3  Its orbit is likely coplanar with Quaoar's equator,[15]: 1  while the entire Quaoar system is inclined by about 16° with respect to the ecliptic plane.[6]: 359 

Weywot has a high

tidally locked to Quaoar, Weywot's high eccentricity may subject it to a spin-orbit resonance similar to the planet Mercury, where its rotation period is an integer ratio of its orbital period.[6]: 361  Several possible explanations for Weywot's high eccentricity include collisions with other bodies, an origin as a collisionally-ejected fragment of Quaoar, gravitational perturbations, or resonances by other massive bodies.[6]: 362  Of these scenarios, Weywot most likely formed as a fragment of Quaoar that was ejected into an initially eccentric orbit by a major impact event billions of years ago. Weywot's orbit must have tidally evolved very slowly for it to remain eccentric today, which would mean its orbit has changed very little since it had formed.[6]: 362 [16] The trans-Neptunian dwarf planet 225088 Gonggong hosts a similarly eccentric satellite named Xiangliu, and it is inferred to have formed and evolved in the same way as Weywot.[16]

Prior to further observations in 2019,

stellar occultation on 4 August 2019, which allowed researchers to unambiguously settle on a prograde 12.4-day orbit for Weywot.[7]
: 6 

Ring dynamics

In February 2023, astronomers announced the discovery of a distant

mean-motion orbital resonance with Weywot that lies slightly interior to the ring at 4,021 km (2,499 mi).[7]: 3  This near-coincidence suggests Weywot could play a role in perturbing the ring by producing irregularities in the ring's width and density. Together with Quaoar's 1:3 spin-orbit resonance that lies slightly farther from the ring, the 6:1 Weywot mean-motion resonance is thought to help prevent the ring from accreting into a solid body.[7]: 6  It is unknown which of these two resonances plays a more dominant role in maintaining the ring, as the underlying parameters necessary to calculate their effects are poorly known.[7]: 6  The ring is likely coplanar with Weywot's orbit within a relative inclination of ±.[15]
: 4 

Physical characteristics

Weywot is extremely dim, with an

Keck Telescopes.[10] For these reasons, most of Weywot's physical properties such as its mass, color, and light curve have yet to be measured.[11]
: 1547 

As of 2023[update], Weywot is thought to be about 200 km (120 mi) in diameter, based on multiple observations of a stellar occultation by Weywot on 22 June 2023.[8] Occultations by Weywot have been observed previously on 4 August 2019, 11 June 2022, and 26 May 2023, which all gave similar diameter estimates of about 170 km (110 mi).[17][18][8] Given Weywot's magnitude difference from Quaoar, this occultation-derived diameter suggests Weywot has low geometric albedo of about 0.04, considerably darker than Quaoar's albedo of 0.12.[8] Weywot was previously thought to have a diameter of 81 ± 11 km (50 ± 7 mi), about half that of the occultation measurement, because researchers based this estimate only on Weywot's relative brightness and assumed it had a similar albedo as Quaoar.[19]: 15 [11]: 1547 [8]

Notes

  1. ^
    visible wavelengths.[1][2] The apparent magnitude of Weywot by itself is the sum of this magnitude difference and Quaoar's apparent magnitude of 19.0. Likewise, the absolute magnitude of Weywot is the sum of this magnitude difference and Quaoar's absolute magnitude of 2.74.[9]

References

  1. ^ from the original on 19 July 2011. Retrieved 5 July 2011.
  2. ^ a b Johnston, Wm. Robert (21 September 2014). "(50000) Quaoar and Weywot". Asteroids with Satellites Database. Johnston's Archive. Retrieved 26 May 2009.
  3. ^ Suer, Terry-Ann. "Publications". sites.google.com. Retrieved 11 February 2023.
  4. ^ a b "M. P. C. 67220" (PDF). Minor Planet Circulars (67220). Minor Planet Center: 134. 4 October 2009. Retrieved 12 February 2023.
  5. ^ a b "JPL Small-Body Database Browser: 50000 Quaoar (2002 LM60)". Jet Propulsion Laboratory. Retrieved 11 February 2023.
  6. ^
    S2CID 17196395
    .
  7. ^ .
  8. ^ a b c d e f Fernandez-Valenzuela, E.; Holler, B.; Ortiz, J. L.; Vachier, F.; Braga-Ribas, F.; Rommel, F.; et al. (October 2023). Weywot: the darkest known satellite in the trans-Neptunian region. 55th Annual DPS Meeting Joint with EPSC. Vol. 55. San Antonio, Texas. 202.04.
  9. ^ a b c d Grundy, Will (21 March 2022). "Quaoar and Weywot (50000 2002 LM60)". www2.lowell.edu. Lowell Observatory. Retrieved 11 February 2023.
  10. ^ . Cycle 14. Retrieved 11 February 2023.
  11. ^ .
  12. . Cycle 15. Retrieved 27 April 2023.
  13. . Cycle 16. Retrieved 27 April 2023.
  14. ^ Street, Nick (August 2008). "Heavenly Bodies and the People of the Earth". Search Magazine. Heldref Publications. Archived from the original on 18 May 2009. Retrieved 8 January 2020.
  15. ^
    Wikidata Q117802048
    .
  16. ^ . 226.
  17. .
  18. ^ "2022 Asteroidal Occultation Preliminary Results – 50000(1) Weywot 2022 Jun 11". www.asteroidoccultation.com. International Occultation Timing Association. 11 June 2022. Archived from the original on 12 February 2023.
  19. .
This page is based on the copyrighted Wikipedia article: Weywot. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy