Widom–Larsen theory

Source: Wikipedia, the free encyclopedia.

The Widom–Larsen theory is a proposed explanation for supposed

Low Energy Nuclear Reactions (LENR) developed in 2005 by Allan Widom and Lewis Larsen. In the paper describing the idea, they claim that ultra low momentum neutrons are produced in the cold fusion apparatuses[1] during weak interactions when protons capture "heavy" electrons from metallic hydride surfaces.[2]
One source has held that it is "unlikely the electron energy threshold for neutron production can be reached in a metal lattice system without a substantial energy input".[3]

The idea was expanded by Yogendra Srivastava together with Widom and Larsen in 2014, who went on to propose that it could be an explanation for neutrons observed in exploding wire experiments,

solar corona and flares, and neutron production in thunderstorms.[4] However, unrealistic concentrations of free electrons are needed for the neutron yield to be a significant component of thunderstorm neutrons, discounting the explanation.[5][6][7]

References

  1. ^ Anderson, Mark (23 October 2012). "Big Idea: Bring Back the "Cold Fusion" Dream. A new theory may explain the notorious cold fusion experiment from two decades ago, reigniting hopes of a clean-energy breakthrough". Discover Magazine.
  2. S2CID 55478462
    .
  3. . Retrieved 24 March 2017.
  4. ^ Srivastava, Y; Widom, A; Larsen, L (October 2014). "A primer for electroweak induced low-energy nuclear reactions". Pramana. Retrieved 24 March 2017.
  5. .
  6. .
  7. .