Геномный импринтинг

Материал из Википедии — свободной энциклопедии

Геномный импринтинг

цветковых растений
.

Обзор

У

диплоидных организмов соматические клетки несут две копии генома. Поэтому каждый аутосомный ген представлен двумя копиями, аллелями, полученными от материнского и отцовского организмов в результате оплодотворения. Для преобладающего числа генов экспрессия идёт с обоих аллелей одновременно. Однако у млекопитающих менее одного процента генов импринтированы, то есть экспрессируется только один аллель.[2]
Какой аллель будет экспрессироваться, зависит от пола родительского организма, предоставившего аллель. Например, для гена
IGF2 (инсулиноподобного фактора роста) экспрессируется только аллель, наследуемый от отца.[3]

Слово «импринтинг» было впервые использовано для описания явлений, наблюдаемых у насекомого Pseudococcus nipae.

гаплоидный набор хромосом становится гетерохроматиновым после шестого деления зиготы и остаётся таким в большинстве тканей, поэтому самцы являются функционально гаплоидными.[5][6][7] У насекомых явления импринтинга обычно означают сайленсинг генома у самцов и поэтому вовлечены в процессы определения пола. У млекопитающих процессы геномного импринтинга вовлечены в функциональное неравенство между родительскими аллелями генов.[8]

История открытия

Первые опыты, обнаружившие различие в хромосомах, полученных от отца или от матери, были проделаны практически одновременно учёными, работавшими в Филадельфии[9] и Кембридже[10], в 1984 году.

Пятью годами позже Дэвид Хэйг[англ.] из Гарварда высказал гипотезу, что отцовские гены отвечают за образование плаценты, а материнские — за дифференцировку клеток эмбриона при формировании тканей и органов. Из этого он сделал вывод, что у яйцекладущих и даже у сумчатых не должно быть импринтинга отцовских или материнских генов. Этот вывод был экспериментально подтверждён[11]. Но исследования Хейга объясняют лишь некоторые случаи импринтинга[12][13].

Механизм

Импринтинг генов осуществляется с помощью процесса

репрессорными комплексами поликомб[14]. Если по каким-то причинам импринтинг не сработает, это может привести к появлению генетических нарушений — например, синдром Прадера — Вилли[15], синдромы Беквита — Видемана и Рассела — Сильвера, а также к целому ряду других нарушений[16]. Кроме того потеря импринтинга является одной из причин низкой эффективности при клонировании животных путем переноса ядер соматических клеток и способствует дефектам развития, наблюдаемым у клонированных эмбрионов[17][18]

См. также

Примечания

  1. Нуклеиновые кислоты: от А до Я / Б. Аппель [и др.]. — М.: Бином: Лаборатория знаний, 2013. — 413 с. — 700 экз. — ISBN 978-5-9963-0376-2.
  2. 8 февраля 2009 года.
  3. DeChiara, Thomas M.; Elizabeth J. Robertson and Argiris Efstratiadis. Parental imprinting of the mouse insulin-like growth factor II gene (англ.) // Cell : journal. — Cell Press, 1991. — February (vol. 64, no. 4). — P. 849—859. — PMID 1997210. Архивировано 30 мая 2020 года.
  4. 25 июля 2011 года.
  5. 9 февраля 2009 года.
  6. Hughes-Schrader, S. Cytology of coccids (Coccoïdea-Homoptera) (неопр.) // Advances in Genetics. — 1948. — Т. 35, № 2. — С. 127—203. — PMID 18103373.
  7. Nur, U. Heterochromatization and euchromatization of whole genomes in scale insects (Coccoidea: Homoptera) (англ.) // Dev. Suppl.[англ.] : journal. — 1990. — P. 29—34. — PMID 2090427.
  8. 19 февраля 2019 года.
  9. ]
  10. ]
  11. ]
  12. ]
  13. Hurst L. D. 1997. Evolutionary theories of genomic imprinting. In: Reik W., Surani A. (eds), Genomic imprinting, p. 211—237. Oxford University Press, Oxford.
  14. ]
  15. Horsthemke B. 1997. Imprinting in the Prader-Willi / Angelman syndrome region on human chromosome 15. In: Reik W., Surani A. (eds), Genomic imprinting, p. 177—190. Oxford University Press, Oxford.
  16. ]
  17. Overcoming Genomic Imprinting Barrier Improves Mammal Cloning. Дата обращения: 20 июня 2020. Архивировано 20 июня 2020 года.
  18. ]

Литература