Квазиправильный многогранник
Квазипра́вильный многогра́нник (от лат. quas(i) «наподобие», «нечто вроде») — полуправильный многогранник, который имеет в точности два вида правильных граней, поочерёдно следующих вокруг каждой вершины. Эти многогранники рёберно транзитивны[англ.], а потому на шаг ближе к правильным многогранникам, чем полуправильные, которые лишь вершинно транзитивны.
(3.3)2 | (3.4)2 | (3.5)2 | (3.6)2 | (3.7)2 | (3.8)2 | (3.∞)2 |
---|---|---|---|---|---|---|
r{3,3}
|
r{3,4} | r{3,5} | r{3,6} | r{3,7}[англ.] | r{3,8}[англ.] | r{3,∞}[англ.] |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Квазиправильные многогранники или мозаики имеют в точности два типа правильных граней, которые располагаются поочерёдно вокруг каждой вершины. Их вершинные фигуры являются прямоугольниками .
|
Существует только два
Эти формы, представленные парой (правильным многогранником и двойственным ему), могут быть заданы вертикальным символом Шлефли или r{p, q} для представления граней как правильного {p, q}, так и двойственного {q, p} многогранников. Квазиправильный многогранник с этим символом имеет вершинную конфигурацию[англ.] p.q.p.q (или (p.q)2).
В более общем случае квазиправильные фигуры могут иметь вершинную конфигурацию[англ.] (p.q)r, представляющую r (2 или более) граней разного вида вокруг вершины.
Некоторые правильные многогранники и мозаики (имеющие чётное число граней в каждой вершине) могут также рассматриваться как квазиправильные путём разделения граней на два множества (как если бы мы их выкрасили в разные цвета). Правильная фигура с символом Шлефли {p, q} может быть квазиправильной и будет иметь вершинную кофигурацию (p.p)q/2, если q чётно.
Прямоугольные треугольники (p p 2)[1] | |||||||
---|---|---|---|---|---|---|---|
{3,4} r{3,3} |
{4,4} r{4,4} |
{5,4} r{5,5} |
{6,4} r{6,6} |
{7,4} r{7,7} |
{8,4} r{8,8} |
{∞,4} r{∞,∞} | |
(3.3)2 | (4.4)2 | (5.5)2[англ.] | (6.6)2[англ.] | (7.7)2[англ.] | (8.8)2[англ.] | (∞.∞)2[англ.] | |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |
![]() |
![]() Квадратный паркет |
![]() 5-угольная мозаика 4-го порядка[англ.] |
![]() 6-угольная мозаика 4-го порядка[англ.] |
![]() 7-угольная мозаика 4-го порядка[англ.] |
![]() 8-угольная мозаика 4-го порядка[англ.] |
![]() ∞-угольная мозаика 4-го порядка[англ.] | |
Треугольники общего вида (p p 3)[2] | |||||||
{3,6} | {4,6}[англ.] | {5,6}[англ.] | {6,6}[англ.] | {7,6}[англ.] | {8,6}[англ.] | {∞,6}[англ.] | |
(3.3)3 | (4.4)3 | (5.5)3 | (6.6)3 | (7.7)3 | (8.8)3 | (∞.∞)3 | |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() | |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
Треугольники общего вида (p p 4) | |||||||
{3,8}[англ.] | {4,8}[англ.] | {5,8}[англ.] | {6,8}[англ.] | {7,8}[англ.] | {8,8}[англ.] | {∞,8}[англ.] | |
(3.3)4 | (4.4)4 | (5.5)4 | (6.6)4 | (7.7)4 | (8.8)4 | (∞.∞)4 | |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
Правильный многогранник или мозаика могут считаться квазиправильными, если они имеют чётное число граней при каждой вершине (а потому могут быть выкрашены в два цвета, чтобы соседние грани имели разные цвета). |
Построение Витхоффа
![]() Правильные (p | 2 q) и квазиправильные многогранники (2 | p q) получаются построением Витхоффа с генераторной точкой на одном из 3 углов фундаментальной области. Это задаёт единственное ребро внутри фундаментальной области. |

q | 2 p, p | 2 q, 2 | p q
Коксетер определяет квазиправильный многогранник как многогранник, имеющий Символ Витхоффа[англ.] вида p | q r, и он будет правильным, если q=2 или q=r [3].
Диаграммы Коксетера — Дынкина является другой формой символического представления, которое позволяет показать связь между двумя двойственно-правильными формами:
Символ Шлефли | Диаграммы Коксетера — Дынкина | Символ Витхоффа[англ.] | |
---|---|---|---|
{p, q} | ![]() ![]() ![]() ![]() ![]() |
q | 2 p | |
{q, p} | ![]() ![]() ![]() ![]() ![]() |
p | 2 q | |
r{p, q} | ![]() ![]() ![]() ![]() ![]() |
2 | p q |
Выпуклые квазиправильные многогранники
Существует два выпуклых квазиправильных многогранника:
- Кубооктаэдр , вершинная конфигурация (3.4)2, диаграмма Коксетера — Дынкина
- Икосододекаэдр , вершинная конфигурация (3.5)2, диаграмма Коксетера — Дынкина
Кроме того, октаэдр, являющийся также правильным, , с вершинной конфигурацией (3.3)2, может также считаться квазиправильным, если соседним граням дать различные цвета. В таком виде его иногда называют тетратетраэдром. Оставшиеся выпуклые правильные многогранники имеют нечётное число граней при каждой вершине и не могут быть выкрашены так, чтобы обеспечить транзитивность рёбер. Тетратетраэдр имеет диаграмму Коксетера — Дынкина .
Каждый из них образует общее ядро двойственной пары
Правильный | Двойственный правильный |
Квазиправильный | Вершинная фигура
|
---|---|---|---|
![]() Тетраэдр {3,3} ![]() ![]() ![]() ![]() ![]() 3 | 2 3 |
![]() Тетраэдр {3,3} ![]() ![]() ![]() ![]() ![]() 3 | 2 3 |
![]() Тетратетраэдр r{3,3} ![]() ![]() ![]() ![]() ![]() 2 | 3 3 |
![]() 3.3.3.3 |
![]() Куб {4,3} ![]() ![]() ![]() ![]() ![]() 3 | 2 4 |
![]() Октаэдр {3,4} ![]() ![]() ![]() ![]() ![]() 4 | 2 3 |
![]() Кубооктаэдр r{3,4} ![]() ![]() ![]() ![]() ![]() 2 | 3 4 |
![]() 3.4.3.4 |
Додекаэдр {5,3} ![]() ![]() ![]() ![]() ![]() 3 | 2 5 |
![]() Икосаэдр {3,5} ![]() ![]() ![]() ![]() ![]() 5 | 2 3 |
![]() Икосододекаэдр r{3,4} ![]() ![]() ![]() ![]() ![]() 2 | 3 5 |
![]() 3.5.3.5 |
Каждый из этих квазиправильных многогранников можно построить с помощью полного усечения любого из родителей, усекая рёбра полностью, пока они не превратятся в точки.
Квазиправильные мозаики
Эту последовательность продолжает
Правильный многоугольник | Двойственный правильный | Квазиправильный | Вершинная фигура
|
---|---|---|---|
![]() шестиугольная мозаика {6,3} ![]() ![]() ![]() ![]() ![]() 6 | 2 3 |
![]() треугольная мозаика {3,6} ![]() ![]() ![]() ![]() ![]() 3 | 2 6 |
![]() тришестиугольная мозаика r{5,3} ![]() ![]() ![]() ![]() ![]() 2 | 3 6 |
![]() 3.6.3.6 |
Рисунок шахматной доски является квазиправильной раскраской
Правильный многоугольник | Двойственный правильный | Квазиправильный | Вершинная фигура
|
---|---|---|---|
![]() {4,4} ![]() ![]() ![]() ![]() ![]() 4 | 2 4 |
![]() {4,4} ![]() ![]() ![]() ![]() ![]() 4 | 2 4 |
![]() r{4,4} ![]() ![]() ![]() ![]() ![]() 2 | 4 4 |
![]() 4.4.4.4 |
Треугольную мозаику можно также считать квазиправильной, с тремя множествами альтернированных треугольников в каждой вершине, (3.3)3:
![]() h{6,3} 3 | 3 3 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
На гиперболической плоскости (
Правильный многоугольник | Двойственный правильный | Квазиправильный | Вершинная фигура
|
---|---|---|---|
![]() Семиугольная мозаика {7,3} ![]() ![]() ![]() ![]() ![]() 7 | 2 3 |
![]() Треугольный паркет {3,7} ![]() ![]() ![]() ![]() ![]() 3 | 2 7 |
![]() Трисемиугольная мозаика[англ.] r{3,7} ![]() ![]() ![]() ![]() ![]() 2 | 3 7 |
![]() 3.7.3.7 |
Невыпуклые примеры
Коксетер и др. (1954) классифицировали также некоторые звёздчатые многогранники, имеющие квазиправильные характеристики:
Два многогранника основываются на двойственных парах правильных тел Кеплера — Пуансо.
Большой икосододекаэдр и додекододекаэдр :
Правильный | Двойственный правильный | Квазиправильный | Вершинная фигура
|
---|---|---|---|
![]() Большой звёздчатый додекаэдр {5/2,3} ![]() ![]() ![]() ![]() ![]() ![]() ![]() 3 | 2 5/2 |
![]() Большой икосаэдр {3,5/2} ![]() ![]() ![]() ![]() ![]() ![]() ![]() 5/2 | 2 3 |
![]() Большой икосододекаэдр r{3,5/2} ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2 | 3 5/2 |
![]() 3.5/2.3.5/2 |
![]() Малый звёздчатый додекаэдр {5/2,5} ![]() ![]() ![]() ![]() ![]() ![]() ![]() 5 | 2 5/2 |
![]() Большой додекаэдр {5,5/2} ![]() ![]() ![]() ![]() ![]() ![]() ![]() 5/2 | 2 5 |
![]() Додекододекаэдр r{5,5/2} ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2 | 5 5/2 |
![]() 5.5/2.5.5/2 |
Наконец, существует три битригональных[англ.] вида, вершинные фигуры которых содержат три перемежающихся типа граней:
Рисунок | Название многогранника Символ Витхоффа[англ.] Диаграмма Коксетера |
Вершинная фигура
|
---|---|---|
![]() |
Битреугольный додекододекаэдр[англ.] 3 | 5/3 5 ![]() ![]() ![]() ![]() ![]() ![]() |
![]() (5.5/3)3 |
![]() |
Малый битреугольный икосододекаэдр[англ.] 3 | 5/2 3 ![]() ![]() ![]() ![]() ![]() ![]() |
![]() (3.5/2)3 |
![]() |
Большой битреугольный икосододекаэдр[англ.] 3/2 | 3 5 ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ((3.5)3)/2 |
Квазиправильные двойственные
Некоторые авторы высказывают мнение, что, поскольку двойственные многогранники к квазиправильным имеют те же симметрии, эти двойственные тела тоже следует считать квазиправильными, но не все математики придерживаются такого мнения. Эти двойственные многогранники транзитивны относительно своих рёбер и граней (но не вершин). Они являются рёберно транзитивными телами Каталана[англ.]. Выпуклые формы, согласно порядку многогранника (как выше):
- Ромбододекаэдр с двумя типами перемежающихся вершин, 8 вершин с тремя ромбическими гранями, и 6 вершин с четырьмя ромбическими гранями.
- Ромботриаконтаэдр с двумя типами перемежающихся вершин, 20 вершин с тремя ромбическими гранями, и 12 вершин с пятью ромбическими гранями.
Кроме того, будучи двойственным октаэдру, куб, являющийся правильным, может быть сделан квазиправильным, если раскрасить его вершины в два цвета, так, чтобы вершины на одном ребре имели разные цвета.
Их





![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Куб V(3.3)2 ![]() ![]() ![]() ![]() ![]() |
Ромбододекаэдр V(3.4)2 ![]() ![]() ![]() ![]() ![]() |
Ромботри- аконтаэдр V(3.5)2 ![]() ![]() ![]() ![]() ![]() |
Ромбическая мозаика V(3.6)2 ![]() ![]() ![]() ![]() ![]() |
V(3.7)2![]() ![]() ![]() ![]() ![]() |
V(3.8)2![]() ![]() ![]() ![]() ![]() |
Эти три квазиправильных двойственных многогранника характерны наличием ромбических граней.
Эта ромбическая структура граней продолжает V(3.6)2, ромбическая мозаика.
Квазиправильные многогранники в 4-мерном пространстве и квазиправильные соты




В евклидовом 4-мерном пространстве правильный





Единственные квазиправильные соты в евклидовом 3-мерном пространстве — .








В гиперболическом 3-мерном пространстве квазиправильными сотами являются . Связанные паракомпактные альтернированные кубические соты 6-го порядка[англ.], h{4,3,6} имеют альтернированные тетраэдральные и шестиугольные мозаичные ячейки с вершинной фигурой, которая является тришестиугольной мозаикой
.
Пространство | Конечное | Аффинное | Компактное | Паракомпактное | ||
---|---|---|---|---|---|---|
Название | h{4,3,3} | h{4,3,4} | h{4,3,5} | h{4,3,6} | h{4,4,3} | h{4,4,4} |
Диаграмма Коксетера |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |
Рисунок | ![]() |
![]() |
![]() |
![]() | ||
Вершинная фигура r{p,3} |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
Можно уменьшить симметрию правильных многогранных сот вида {p,3,4} или как
и получить квазиправильный вид
, создавая попеременную раскраску {p,3} ячеек. Это можно сделать для евклидовых








Пространство | Евклидово 4-мерное | Евклидово 3-мерное | Гиперболическое 3-мерное | ||
---|---|---|---|---|---|
Название | {3,3,4} {3,31,1} = |
{4,3,4} {4,31,1} =
|
{5,3,4} {5,31,1} = |
{6,3,4} {6,31,1} = | |
Диаграмма Коксетера |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
Рисунок | ![]() |
![]() |
![]() |
![]() | |
Ячейки {p,3} |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
Таким же образом можно уменьшить вдвое симметрию правильных гиперболических сот вида {p,3,6} или как
и получить квазиправильный вид
, задавая попеременную раскраску {p,3} ячеек. Они имеют шесть ячеек вокруг каждого ребра, поочерёдно выкрашенные в 2 цвета. Их



Вид | Паракомпактные | Некомпактные | |||||
---|---|---|---|---|---|---|---|
Название | {3,3,6} {3,3[3]} |
{4,3,6} {4,3[3]} |
{5,3,6} {5,3[3]} |
{6,3,6} {6,3[3]} |
{7,3,6} {7,3[3]} |
{8,3,6} {8,3[3]} |
... {∞,3,6} {∞,3[3]} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Рисунок | ![]() |
![]() |
![]() |
![]() |
|||
Ячейки | ![]() {3,3} ![]() ![]() ![]() ![]() ![]() |
![]() {4,3} ![]() ![]() ![]() ![]() ![]() |
{5,3} ![]() ![]() ![]() ![]() ![]() |
![]() {6,3} ![]() ![]() ![]() ![]() ![]() |
![]() {7,3} ![]() ![]() ![]() ![]() ![]() |
![]() {8,3} ![]() ![]() ![]() ![]() ![]() |
![]() {∞,3} ![]() ![]() ![]() ![]() ![]() |
См. также
Примечания
- ↑ Фундаментальная область в виде прямоугольного треугольника
- ↑ Фундаментальная область в виде треугольника общего вида
- ↑ Coxeter, Longuet-Higgins, Miller, 1954, с. 401–450.
- ↑ Coxeter, 1973, с. 69, 88.
Литература
- P. Cromwell. Polyhedra. — United Kingdom: Cambridge University Press, 1997. — ISBN 0-521-55432-2.
- H.S.M Coxeter. Regular Polytopes[англ.]. — 3rd edition. — New York: Dover Publications Inc., 1973. — ISBN 0-486-61480-8. (стр.17 Глава 2.3: Quasi-Regular Polyhedra, стр. 69 Quasi-regular honeycombs p. 69
- H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, вып. 916. — С. 401–450. — doi:10.1098/rsta.1954.0003. —. (Section 7, The regular and quasiregular polyhedra p | q r)
Ссылки
- Weisstein, Eric W. Quasiregular polyhedron (англ.) на сайте Wolfram MathWorld.
- Weisstein, Eric W. Uniform polyhedron (англ.) на сайте Wolfram MathWorld. Quasi-regular polyhedra: (p.q)r
- George Hart, Quasiregular polyhedra Архивировано 2 сентября 2013 года.
![]() | У этой статьи есть несколько проблем, помогите их исправить: |