Квантовая электроника

Материал из Википедии — свободной энциклопедии

Квантовая электроника — область

квантовых системах, а также свойства получаемых таким образом усилителей и генераторов и их применение в электронных приборах
.

Физические основы квантовой электроники

С точки зрения классической

поляризация, направление распространения) никоим образом не связаны с характеристиками фотонов, испускаемых другими частицами. Принципиально иная ситуация наблюдается при вынужденном испускании фотона под воздействием внешнего излучения той же частоты. При этом образуется фотон с точно теми же свойствами, что и у фотонов, вызвавших его появление, то есть формируется когерентное
излучение. Наконец, имеет место процесс поглощения фотонов из внешнего излучения, противоположный вынужденному испусканию.

Обычно поглощение преобладает над вынужденным излучением. Если бы можно было добиться обратной ситуации, в веществе произошло бы усиление исходной внешней (вынуждающей) волны. Рассмотрим переходы между уровнями энергии и , характеризуемые частотой , так что ( —

коэффициенты Эйнштейна
и :

  • для спонтанных переходов ,
  • для поглощения ,
  • для вынужденного излучения ( — спектральная объёмная плотность энергии).

При этом , (уровни считаются

электромагнитной волны
равно разности испускаемой и поглощаемой в вынужденных процессах энергии и пропорционально разности населённостей уровней:

.

В состоянии термодинамического равновесия населённости подчиняются распределению Больцмана, так что

,

поэтому энергия поглощается системой и волна ослабляется. Чтобы волна усиливалась, необходимо, чтобы выполнялось условие , то есть система оказалась в неравновесном состоянии. Такую ситуацию, когда населённость верхнего уровня больше, чем нижнего, называют

инверсией населённостей, или системой с отрицательной температурой. Это состояние системы характеризуется отрицательным значением показателя поглощения
, то есть происходит усиление электромагнитной волны.

Создать

генератор, необходимо поместить среду в систему положительной обратной связи, возвращающей часть излучения назад в среду. Для создания обратной связи используются объёмные и открытые резонаторы. Наконец, для создания устойчивой генерации необходимо превышение энергии вынужденного излучения над потерями энергии (рассеяние
, нагрев среды, полезное излучение), что приводит к требованию превышения мощности накачки определённого порогового значения.

Феменологическая теория Эйнштейна была построена для случая, когда излучатель находится в свободном пространстве и который излучает в бесконечное число мод пространства. При размещении излучателя в пространство с ограниченным числом мод коэффициенты Эйнштейна меняются, см. статью о

Пёрселл-факторе

Из истории квантовой электроники

Предпосылки

Представление о

.

Мазеры

Датой рождения квантовой электроники можно считать

Инверсия населённостей достигается за счёт пространственного разделения возбуждённых и невозбуждённых молекул в сильно неоднородном электрическом поле (см. эффект Штарка). Отсортированный молекулярный пучок пропускается через объёмный резонатор, служащий для осуществления обратной связи. Впоследствии были созданы и другие молекулярные генераторы, например мазер на пучке молекул водорода
. Современные мазеры позволяют достигать стабильности частоты , что позволяет создавать сверхточные часы.

Следующим важным шагом в развитии квантовой электроники стал предложенный в

1957—1958 годах Г. Э. Д. Сковилом (H. E. D. Scovil) и другими были созданы квантовые усилители на парамагнитных кристаллах (например, на рубине
), работавшие в радиодиапазоне.

Лазеры

Для продвижения квантовых генераторов в область оптических частот важной оказалась идея

Твердотельные лазеры
позволили получить генерацию мощных коротких ( с) и сверхкоротких ( с) импульсов света в схемах модуляции добротности и синхронизации мод резонатора.

Вскоре

углекислом газе (длина волны 10,6 мкм, вспомогательные газы — азот и гелий), аргоновые лазеры (0,4880 и 0,5145 мкм), кадмиевый лазер (0,4416 и 0,3250 мкм), лазер на парах меди, эксимерные лазеры (накачка за счёт распада молекул в основном состоянии), химические лазеры (накачка за счёт химических реакций, например, цепной реакции соединения фтора с водородом
).

В

КПД и возможностью плавной перестройки частоты в широком диапазоне (длина волны излучения определяется шириной запрещённой зоны). Существенным результатом является также создание в 1968 году лазеров на полупроводниковых гетероструктурах
.

В конце

красителей
позволяет охватить весь оптический диапазон.

Применения квантовой электроники

Литература

Общие сведения и научно-популярная литература

  • Квантовая электроника: Маленькая энциклопедия. — М.: СЭ, 1969.
  • А. Пекара. Новый облик оптики. — М.: Советское радио, 1973.
  • Н. В. Карлов. Квантовая электроника. // Физика микромира: Маленькая энциклопедия. — М.: СЭ, 1980. — С. 200—217.
  • М. Е. Жаботинский. Квантовая электроника. Архивная копия от 4 октября 2009 на Wayback Machine // Физическая энциклопедия. — Т. 2 — М.: СЭ, 1990. — С. 319—320.

Монографии

  • Н. В. Карлов, А. А. Маненков. Квантовые усилители. — М.: 1966.
  • Н. Бломберген. Нелинейная оптика. — М.: 1966.
  • В. В. Григорьянц, М. Е. Жаботинский, В. Ф. Золин. Квантовые стандарты частоты. — М.: 1968
  • Р. Пантел, Г. Путхоф. Основы квантовой электроники. — М.: Мир, 1972.
  • Ф. Цернике, Дж. Мидвинтер. Прикладная нелинейная оптика. — М.: Мир, 1976.
  • А. Ярив. Квантовая электроника. — М.: Советское радио, 1980.
  • С. А. Ахманов, Н. И. Коротеев. Методы нелинейной оптики в спектроскопии рассеяния света. — М.: 1981.
  • О. Звелто. Принципы лазеров. — М.: Мир, 1984.
  • И. Р. Шен. Принципы нелинейной оптики. — М.: 1989.

Статьи

Ссылки