Полупроводниковые материалы
![]() | Для улучшения этой статьи желательно: |
Полупроводниковые материалы — вещества с чётко выраженными свойствами
Структура
Полупроводниковые материалы по структуре делятся на кристаллические, твёрдые, аморфные и жидкие.
Кристаллические полупроводниковые материалы
Наибольшее практическое применение находят неорганические кристаллические полупроводниковые материалы, которые по химическому составу разделяются на следующие основные группы.
- Элементарные полупроводники: Ge, Si, углерод (алмаз и графит), В, α-Sn (серое олово), Те, Se. Важнейшие представители этой группы — Ge и Si имеют кристаллическую решётку типа алмаза (алмазоподобны). Являются непрямозонными полупроводниками; образуют между собой непрерывный ряд твёрдых растворов, также обладающих полупроводниковыми свойствами.
- Соединения типа AIIIBV элементов III и V группы AlAs— непрямозонные полупроводники. Многие полупроводниковые материалы типа АIIIВV образуют между собой непрерывный ряд твёрдых расплавов — тройных и более сложных (GaxAl1-xAs, GaAsxP1-x, GaxIn1-xP, GaxIn1-xAsyP1-y и т. п.), также являющихся важными.
- Соединения элементов VI группы (ZnS. Многие соединения типа AIIBVI образуют между собой непрерывный ряд твёрдых расплавов, характерными представителями которых являются CdxHg1-xTe, CdxHg1-xSe, CdTexSe1-x. Физические свойства соединений типа AIIBVI в значительной мере определяются содержанием собственных точечных дефектов структуры, имеющих низкую энергию ионизации и проявляющих высокую электрическую активность.
- Тройные соединения типа AIIBIVCV2 кристаллизуются в основном в решётке халькопирита. Обнаруживают магнитное и электрическое упорядочение. Образуют между собой твёрдые расплавы. Во многом являются электронными аналогами соединений типа АIIIВV. Типичные представители: CuInSe2, CdSnAs2, CdGeAs2, ZnSnAs2.
- гексагональная структура), имеющая около 15 разновидностей. Один из наиболее тугоплавких и широкозонных среди широко используемых полупроводниковых материалов.
Некристаллические полупроводниковые материалы
Типичными представителями этой группы являются стеклообразные полупроводниковые материалы — халькогенидные и
Основные электрофизические свойства
Основные электрофизические свойства важнейших полупроводниковых материалов (
Таблица 1. Основные свойства важнейших полупроводниковых материалов.
Элемент, тип соединения | Наименование материала | Ширина запрещённой зоны, эв | Подвижность носителей заряда, 300 K, см2/(в×сек) | Кристаллическая структура | Постоянная решётки, A | Температура плавления, °С | Упругость пара при температуре плавления, атм | ||
---|---|---|---|---|---|---|---|---|---|
при 300 К | при 0 К | электроны | дырки | ||||||
Элемент | С (алмаз) | 5,47 | 5,51 | 2800 | 2100 | алмаз | 3,56679 | 4027 | 10−9 |
Ge | 0,661 | 0,89 | 3900 | 1900 | типа алмаза | 5,65748 | 937 | ||
Si | 1,12 | 1,16 | 1500 | 600 | типа алмаза | 5,43086 | 1420 | 10−6 | |
α-Sn | ~0,08 | типа алмаза | 6,4892 | ||||||
IV—IV | α-SiC | 3 | 3,1 | 400 | 50 | типа сфалерита | 4,358 | 3100 | |
III—V | AISb | 1,63 | 1,75 | 200 | 420 | типа сфалерита | 6,1355 | 1050 | <0,02 |
BP | 6 | типа сфалерита | 4,538 | >1300 | >24 | ||||
GaN | 3,39 | 440 | 200 | типа вюртцита | 3,186 (по оси a) 5,176 (по оси с) | >1700 | >200 | ||
GaSb |
0,726 | 0,80 | 2500 | 680 | типа сфалерита | 6,0955 | 706 | <4⋅10−4 | |
GaAs |
1,424 | 1,52 | 8500 | 400 | типа сфалерита | 5,6534 | 1239 | 1 | |
GaP |
2,27 | 2,40 | 110 | 75 | типа сфалерита | 5,4505 | 1467 | 35 | |
InSb |
0,17 | 0,26 | 78000 | 750 | типа сфалерита | 6,4788 | 525 | <4⋅10−5 | |
InAs |
0,354 | 0,46 | 33000 | 460 | типа сфалерита | 6,0585 | 943 | 0,33 | |
InP |
1,34 | 1,34 | 4600 | 150 | типа сфалерита | 5,8688 | 1060 | 25 | |
II—VI | CdS |
2,42 | 2,56 | 300 | 50 | типа вюртцита | 4,16 (по оси a) 6,756 (по оси с) | 1750 | |
CdSe | 1,7 | 1,85 | 800 | типа сфалерита | 6,05 | 1258 | |||
ZnO |
3,36 | 200 | кубич. | 4,58 | 1975 | ||||
ZnS |
3,6 | 3,7 | 165 | типа вюртцита | 3,82 (по оси a) 6,26 (по оси с) | 1700 | |||
IV—VI | PbS |
0,41 | 0,34 | 600 | 700 | кубич. | 5,935 | 1103 | |
PbTe |
0,32 | 0,24 | 1700 | 840 | кубич. | 6,460 | 917 |
Получение
Необходимым условием достижения высоких электрофизических характеристик полупроводниковых материалов является их глубокая очистка от посторонних
Наиболее распространённый способ получения монокристаллов полупроводниковых материалов — вытягивание из расплава по
Для выращивания монокристаллов полупроводниковых материалов также широко используют методы направленной и зонной кристаллизации расплава в контейнере. В случае разлагающихся соединений для получения монокристаллов требуемого стехиометрического состава процесс проводят в запаянных кварцевых ампулах, поддерживая равновесное давление паров летучего компонента над расплавом; часто для этого требуются камеры высокого давления, в которых поддерживается противодавление инертного газа. При получении монокристаллов необходимой кристаллографической ориентации используют ориентированные соответствующим образом монокристаллические затравки.
Для выращивания монокристаллов полупроводниковых материалов, обладающих подходящим сочетанием плотности и поверхностного натяжения расплава, используют метод бестигельной зонной плавки. Наибольшее распространение этот метод получил в технологии получения монокристаллов Si, имеющего сравнительно невысокую плотность и достаточно большое поверхностное натяжение расплава. Отсутствие контакта расплава со стенками контейнера позволяет получать этим методом наиболее чистые монокристаллы. Обычно процесс выращивания монокристалла совмещают с предварительной дополнительной очисткой полупроводниковых материалов зонной плавкой.
Для получения монокристаллов ряда тугоплавких разлагающихся полупроводниковых соединений (например,
Широко распространено получение полупроводниковых материалов в виде монокристаллических плёнок на разного рода монокристаллических подложках. Такие плёнки называют эпитаксиальными, а процессы их получения — эпитаксиальным наращиванием. Если эпитаксиальная плёнка наращивается на подложку того же вещества, то получаемые структуры называют гомоэпитаксиальными; при наращивании на подложку из другого материала — гетероэпитаксиальными. Возможности получения тонких и сверхтонких однослойных и многослойных структур разнообразной геометрии с широкой вариацией состава и электрофизических свойств по толщине и поверхности наращиваемого слоя, с резкими границами р-n-переходов и гетеропереходов обусловливают широкое использование методов эпитаксиального наращивания в микроэлектронике и интегральной оптике, в практике создания больших и быстродействующих интегральных схем, а также оптоэлектронных приборов (см. Планарная технология).
Для получения эпитаксиальных структур полупроводниковых материалов используют методы жидкостной, газофазной и молекулярно-пучковой эпитаксии. Методом жидкостной эпитаксии получают гомо- и гетероэпитаксиальные структуры на основе соединений типа AIIIBV, AIIBVI, AIVBVI и их твёрдых расплавов. В качестве растворителя обычно используют расплав нелетучего компонента соответствующего соединения. Наращивание эпитаксиального слоя проводят либо в режиме программируемого снижения температуры, либо из предварительно переохлаждённого расплава. Этим методом можно воспроизводимо получать многослойные структуры с толщинами отдельных слоев до ~ 0,1 мкм при толщинах переходных слоев на гетерограницах порядка десятков нм.
Легирование
Для получения полупроводниковых материалов электронного типа проводимости (n-типа) с изменяющейся в широких пределах концентрацией носителей заряда (электронов) обычно используют донорные примеси, образующие «мелкие» энергетические уровни в запрещённой зоне вблизи дна зоны проводимости (энергия ионизации ≤ 0,05 эВ). Для полупроводниковых материалов дырочного типа проводимости (р-типа) аналогичная задача решается путём введения акцепторных примесей, образующих «мелкие» энергетические уровни в запрещённой зоне вблизи потолка валентной зоны. Такие примеси при комнатной температуре практически полностью ионизованы, так что их концентрация приблизительно равна концентрации носителей заряда, которая связана с подвижностями носителей соотношениями: sn = emnn для полупроводниковых материалов n-типа и sр = empp для полупроводниковых материалов р-типа (sn и sр — проводимость; mn и mр — подвижности электронов и дырок соответственно). Для Ge и Si основными донорными легирующими примесями являются элементы V гр. периодической системы: Р, As, Sb, a акцепторными — элементы III гр.: В, Al, Ga. Для соединений типа AIIIBV — соотв. примеси элементов VI гр. (S, Se, Те), а также Sn, и элементов II гр. (Be, Mg, Zn, Cd). Элементы IV гр. (Si, Ge) в зависимости от условий получения кристаллов и эпитаксиальных слоев соед. типа AIIIBV могут проявлять как донорные, так и акцепторные св-ва. В соед. типа AIIBVI и AIVBVI поведение вводимых примесей сильно осложняется присутствием собств. точечных структурных дефектов. Необходимые тип и величина проводимости в них обычно достигаются прецизионным регулированием отклонения состава от стехиометрического, обеспечивающего заданную концентрацию определённого типа собственных точечных дефектов структуры в кристаллах.
Перечисленные выше легирующие примеси образуют, как правило, твёрдые р-ры замещения и обладают достаточно высокой растворимостью (1018−1020 атомов/см³) в широком интервале температур. Растворимость их носит ретроградный характер, при этом максимум растворимости приходится на температурный интервал 700—900 °C в Ge, 1200—1350 °C в Si и 1100—1200 °C в GaAs. Эти примеси являются малоэффективными центрами рекомбинации носителей и сравнительно слабо влияют на величину их времени жизни.
Примеси тяжелых и благородных металлов (Fe, Ni, Cr, W, Cu, Ag, Аu и др.) в большинстве полупроводниковых материалов образуют глубокие, часто многозарядные донорные или акцепторные уровни в запрещённой зоне, имеют большие сечения захвата носителей заряда и являются эффективными центрами рекомбинации носителей, приводя к значительному снижению их времени жизни. Эти примеси обладают малой и обычно ярко выраженной ретроградной растворимостью в полупроводниковых материалах и имеют очень малые значения коэффициента распределения между кристаллом и расплавом. Легирование ими производят в тех случаях, когда надо получить полупроводниковые материалы с малым временем жизни носителей или с высоким удельным электрическим сопротивлением, достигаемым компенсацией мелких энергетических уровней противоположной природы. Последнее часто используют для получения полуизолирующих кристаллов широкозонных полупроводниковых материалов типа AIIIBV (GaAs, GaP, InP); легирующими примесями служат Cr, Fe, Ni. Основные характеристики наиболее распространённых примесей в важнейших полупроводниковых материалах представлены в табл. 2.
Одна из главных задач легирования — обеспечение равномерного распределения вводимой примеси в объёме кристалла и по толщине эпитаксиального слоя. При направленной кристаллизации из расплава равномерное распределение примеси по длине слитка достигается либо путём поддержания её постоянной концентрации в расплаве за счёт его подпитки из твёрдой, жидкой или газовой фазы, либо путём программированного изменения эффективного коэффициента распределения примеси при соответствующем изменении параметров процесса роста. При зонной перекристаллизации для примесей с К << 1 обычно используют целевую загрузку примеси в начальную расплавленную зону с последующим её проходом через всю заготовку. Эффективный способ повышения объемной однородности монокристаллов — воздействие на массоперенос в расплаве наложением магнитного поля. Однородного распределения примеси по толщине слоя в процессе жидкофазной эпитаксии достигают кристаллизацией при постоянной температуре в условиях подпитки расплава, а при газофазной эпитаксии — поддержанием постоянной концентрации легирующей примеси в газовой фазе над подложкой на протяжении всего процесса наращивания.
Легирование полупроводниковых материалов может быть осуществлено также путём радиационного воздействия на кристалл, когда в результате
При создании структур с p-n-переходами для полупроводниковых приборов широко используют легирование путём диффузионного введения примеси. Профиль концентрации примеси при диффузии описывается обычно функцией ошибок и имеет вид плавной кривой, характер которой определяется следующими факторами: температурой и временем проведения процесса; толщиной слоя, из которого осуществляется диффузия; концентрацией и формой нахождения примеси в источнике, а также её электрическим зарядом и возможностью взаимодействия с сопутствующими примесями и дефектами в полупроводниковом материале. Из-за малых значений коэффициента диффузии основных легирующих примесей диффузионное легирование обычно проводят при высоких температурах (для Si, например, при 1100—1350 °C) и в течение длительного времени; при этом оно, как правило, сопровождается генерированием в кристалле значительного количества структурных дефектов, в частности дислокаций. При диффузионном легировании возникают трудности в получении тонких легированных слоев и достаточно резких p-n-переходов.
Для получения тонких легированных слоев перспективны процессы ионного легирования (ионной имплантации), при которых введение примесных атомов в приповерхностный слой материала осуществляется путём бомбардировки соответствующими ионами с энергией от нескольких КэВ до нескольких МэВ. Возможность введения практически любой примеси в любой полупроводниковый материал, низкие рабочие температуры процесса, гибкое управление концентрацией и профилем распределения вводимой примеси, возможность легирования через диэлектрические покрытия с получением тонких, сильно легированных слоев обеспечили широкое распространение этого метода в технологии полупроводниковых приборов. Однако в процессе ионного легирования генерируются собственные точечные дефекты структуры, возникают области разупорядочения решётки, а при больших дозах — аморфизованные слои. Поэтому для получения качественных легированных слоев необходим последующий отжиг введённых дефектов. Отжиг проводят при температурах существенно более низких, чем при диффузии (для Si, например, не выше 700—800 °C). После отжига свойства имплантированных слоев близки к свойствам материала, легированного до тех же концентраций традиционными методами.
Структурные дефекты
Основными структурными дефектами в монокристаллах и эпитаксиальных слоях полупроводниковые материалы являются дислокации, собственные точечные дефекты и их скопления, дефекты упаковки. При выращивании монокристаллов дислокации возникают под действием термических напряжений, обусловленных неоднородным распределением температуры в объёме слитка. Другими источниками дислокаций в монокристаллах являются дислокации, прорастающие из затравки, примесные неоднородности, отклонения от стехиометрического состава. Часто дислокации образуют в кристаллах устойчивые скопления — малоугловые границы. Основными способами снижения плотности дислокаций в монокристаллах являются: уменьшение уровня термических напряжений путём подбора соответствующих тепловых условий выращивания, обеспечение равномерного распределения состава в объёме, строгий контроль стехиометрического состава, введение «упрочняющих» примесей, затрудняющих движение дислокаций и их размножение. В настоящее время даже в промышленных условиях выращивают бездислокационные монокристаллы Si диаметром до 250 мм. Успешно решается задача получения бездислокационных монокристаллов Ge, GaAs, InSb и др. полупроводниковых материалов.
В эпитаксиальных композициях основными источниками дислокаций являются: напряжения несоответствия, обусловленные различием периодов решётки сопрягающихся материалов; термические напряжения из-за различия коэф. термического расширения сопрягающихся материалов или неравномерного распределения температуры по толщине и поверхности наращиваемого слоя; наличие градиента состава по толщине эпитаксиального слоя. Особенно трудна задача получения малодислокационных гетерокомпозиций. Для снижения плотности дислокаций в рабочем слое заданного состава используют технику создания промежуточных по составу «градиентных» слоев или подбирают изопериодные (с близкими значениями периодов кристаллической решётки) гетеропары. При выращивании на монокристаллической подложке бинарных соединений для создания изопериодных гетеропар используют четверные твёрдые растворы, в состав которых входит и вещество подложки.
Важнейшими собственными точечными дефектами в Ge и Si являются вакансии и междоузельные атомы, а также различного рода комплексы, образующиеся в результате взаимодействия этих дефектов между собой или с атомами остаточных и легирующих примесей. В бинарных соединениях точечными дефектами могут быть вакансии в любой из подрешёток, междоузельные атомы обоих компонентов, которые могут находиться в решётке в различных положениях, атомы компонента В на местах атомов А и наоборот. Как и в элементарных полупроводниковых материалах, эти «простые» собственные точечные дефекты могут взаимодействовать между собой и с примесями с образованием разнообразных комплексов. Ещё более сложной выглядит картина образования дефектов в многокомпонентных соединениях и твёрдых расплавах. Собственные точечные дефекты образуются при нагреве, облучении частицами высоких энергий, пластичных деформациях; существенную роль играет отклонение состава от стехиометрического. Наиболее эффективными способами снижения концентрации собственных точечных дефектов в полупроводниковых материалах является термообработка в различных средах. В случае химических соединений термообработку обычно проводят в атмосфере паров недостающего компонента, выбирая рабочие температуры с учётом конфигурации области гомогенности.
Применение
Важнейшая область применения полупроводниковых материалов —
Литература
- Горелик С. С., Дашевский М. Я., Материаловедение полупроводников и диэлектриков, М., 1988
- Мильвидский М. Г., Полупроводниковые материалы в современной электронике, М., 1986
- Пасынков В. В., Сорокин В. С, Материалы электронной техники, 2 изд., М., 1986
- Нашельский А. Я., Технология полупроводниковых материалов, М., 1987
- Мейлихов Е. 3., Лазарев С. Д., Электрофизические свойства полупроводников. (Справочник физических величин), М., 1987