Эта статья входит в число хороших статей

Профиль спектральной линии

Материал из Википедии — свободной энциклопедии
Профиль спектральной линии и его параметры: длина волны λ0, ширина на полувысоте FWHM и эквивалентная ширина W

Профиль (контур)

лоренцевский профиль, то наблюдаемые профили линий представляют собой их свёрткуфойгтовский профиль
, который достаточно хорошо описывает большинство спектральных линий. Однако в некоторых условиях, например, при высоком давлении, могут возникать профили линий сложной асимметричной формы.

К механизмам уширения относятся, например, естественное уширение, доплеровское уширение и некоторые другие эффекты. Кроме того, на наблюдаемый профиль линии влияет аппаратная функция используемых приборов: поскольку оптические приборы имеют конечное разрешение, даже достаточно узкая линия всё равно будет иметь некоторую ширину и профиль, называемый инструментальным — зачастую инструментальный профиль и определяет наблюдаемую ширину линии.

Описание

Профиль (контур) спектральной линии — распределение интенсивности излучения или поглощения в линии. Интенсивность излучения в спектре описывается функцией распределения энергии по длинам волн или частотам и зависит от множества факторов, называемых механизмами уширения[⇨][1][2]. Для отделения излучения или поглощения в линии от излучения в непрерывном спектре проводится экстраполяция соседних с линией областей спектра на область, где наблюдается линия, как если бы она отсутствовала. Частотное распределение интенсивности задаётся функцией спектральной плотности излучения , иногда называемой «интенсивностью на частоте », а полная интенсивность при этом является интегралом по всей спектральной области . Можно обозначить интенсивность наблюдаемого спектра на частоте как , а экстраполированного — как . Для эмиссионных линий разность этих величин называется интенсивностью излучения в линии на частоте . Для линий поглощения глубиной линии может называться как абсолютная разность[3], так и нормированная на [4]. Другой параметр — остаточная интенсивность — выражается как [5][6]. Если в линии поглощения интенсивность спектра доходит до нуля, то линия называется насыщенной[7].

Параметры

Ширина линии на полувысоте, иногда называемая полушириной — это разность между длинами волн или частотами, на которых интенсивность излучения или глубина линии составляет половину от максимальной. Этот параметр обозначается как (от англ. Full Width at Half Maximum). Область линии, находящаяся внутри ширины на полувысоте, называется центральной частью, а области, находящиеся по сторонам ― крыльями[2][5][6].

Для описания интенсивности линий поглощения используется понятие эквивалентной ширины : это размер области в длинах волн () или в частотах (), в котором непрерывный спектр излучает суммарно столько же энергии, сколько поглощается во всей линии. Формально она определяется через остаточную интенсивность как или — аналогичные рассуждения можно провести для спектра по длинам волн, а не частотам. Теоретически, интегрирование должно производиться от до , но на практике интегрируют на конечном интервале, включающем в себя основные части линии — как правило, ширина интервала составляет не более нескольких десятков нанометров[8][9]. Иными словами, это ширина прямоугольника с высотой, равной интенсивности непрерывного спектра, площадь которого равна площади над спектральной линией[5][6][10].

Поскольку количество фотонов, поглощаемых или излучаемых в линии, зависит только от количества атомов в соответствующем состоянии и плотности излучения, то, при прочих равных, чем больше ширина на полувысоте, тем меньше её глубина или интенсивность[11].

Вид профиля

лоренцевский профили с одинаковой шириной на полувысоте
и интенсивностью в центре
Гауссовский и лоренцевский профили с одинаковой шириной на полувысоте и фойгтовский профиль, являющийся их свёрткой

Большинство механизмов уширения (см. ниже[⇨]), отдельно взятые, приводят к формированию гауссовского или лоренцевского профиля спектральной линии. Если распределение интенсивности или глубины нормировано на единицу, то есть, , то

гауссовский профиль описывается следующей формулой[2][12]
:

где — частота линии, — разность частот, на которых интенсивность линии в e раз меньше максимальной. Величина ширина на полувысоте для гауссовского профиля — связана с равенством [12].

Лоренцевский профиль описывается формулой[12]
:

где — частота линии, — ширина на полувысоте для лоренцевского профиля, — сдвиг линии. При прочих равных условиях, лоренцевский профиль имеет более резкий максимум и более выраженные крылья, чем гауссовский[5][12][13].

Для линий поглощения данные формулы верны лишь в случае, если линии слабы. Для слабых линий глубина на определённой частоте , нормированная на интенсивность непрерывного спектра, примерно равна оптической толщине ; общая формула имеет вид . Если линии поглощения сильны, то формулы для профилей должны применяться к оптической толщине, а не к глубине линии[4][14][15].

Если независимо друг от друга действует несколько механизмов, то профиль, создаваемый ими, является свёрткой этих профилей. В частности, свёртка двух гауссовских профилей с ширинами на полувысоте и также является гауссовским профилем с шириной ; свёртка двух лоренцевских профилей с ширинами и является лоренцевским профилем с шириной . Свёртка гауссовского и лоренцевского профиля даёт фойгтовский профиль, который достаточно точно описывает большинство спектральных линий[16][17]. Если ширина гауссовского профиля сильно меньше, чем ширина лоренцевского, то фойгтовский профиль, получаемый при их свёртке, оказывается похож на лоренцевский; в обратном случае центральная часть профиля оказывается похожа на гауссовский профиль, а крылья убывают приблизительно как [12][18].

В некоторых случаях, например, при высоком давлении, могут возникать сложные, асимметричные профили спектральных линий[2]. Профили спектральных линий содержат большое количество информации об условиях в среде, где они возникли, поскольку разные механизмы уширения приводят к образованию различных профилей[1][5][12].

Механизмы уширения

Существует множество факторов, которые приводят к увеличению ширины линии и из-за которых спектральные линии не являются монохроматическими ― они называются механизмами уширения[1][2][5].

Естественная ширина

Естественная ширина спектральной линии, также называемая минимальной, обусловлена квантовыми эффектами[19]. В рамках классической механики такое явление объясняется радиационным затуханием, поэтому естественная ширина также называется радиационной[20]. Если среднее время жизни состояния, из которого переходит атом, равно , то в силу принципа неопределённости энергия этого состояния определена с точностью до , где приведённая постоянная Планка, постоянная Планка. Тогда неопределённость частоты излучения, соответствующей этой энергии, составляет . Поскольку энергия фотона в линии зависит от энергии и начального, и конечного состояния, то ширина на полувысоте выражается следующим образом[17]:

где индексы обозначают уровни и [17]. Естественная ширина обязательно присутствует у всех линий, но, как правило, она очень мала по сравнению с остальными эффектами при их наличии[21]. Естественное уширение спектральной линии приводит к формированию лоренцевского профиля[2], типичное значение естественной ширины линии составляет 10−3 Å[20], а особо малые естественные ширины имеют запрещённые линии[22].

Доплеровское уширение