Синглетный кислород

Материал из Википедии — свободной энциклопедии
Диаграмма молекулярных орбиталей для синглетного кислорода. Квантовая механика предсказывает, что такая конфигурация (с неподелённой электронной парой) обладает более высокой энергией, чем основное триплетное состояние.

Сингле́тный кислоро́д — общее название для двух

эВ. Открыт Х. Каутским
.

Строение молекулы

Молекулярный кислород отличается от большинства молекул наличием триплетного основного состояния, O2(X3Σg). Теория молекулярных орбиталей предсказывает три низколежащих возбуждённых синглетных состояния O2(a1Δg), O2(a′1Δ′g) и O2(b1Σg+) (номенклатура объясняется в статье Символы молекулярных термов[англ.]). Эти электронные состояния отличаются только спином и занятостью вырожденных разрыхляющих πg-орбиталей. Состояния O2(a1Δg) и O2(a′1Δ′g) — вырождены. Состояние O2(b1Σg+) — очень короткоживущее и быстро релаксирующее в более низколежащее возбуждённое состояние O2(a1Δg). Поэтому обычно именно O2(a1Δg) называют синглетным кислородом.

Разница энергий между основным состоянием и синглетным кислородом составляет 94,2 кДж/моль (0,98 эВ на молекулу) и соответствует переходу в близком

ИК-диапазоне (около 1270 нм). В изолированной молекуле переход запрещён по правилам отбора: спину, симметрии и по чётности
. Поэтому прямое возбуждение кислорода в основном состоянии светом для образования синглетного кислорода крайне маловероятно, хотя и возможно. Как следствие, синглетный кислород в газовой фазе экстремально долгоживущий (период полураспада состояния при нормальных условиях — 72 минуты). Взаимодействия с растворителями, однако, уменьшают время жизни до микросекунд или даже до наносекунд.

Химические свойства

гипохлоритом. Синглетный кислород — основной активный компонент фотодинамической терапии
.

Мягкое красное свечение синглетного кислорода, полученного взаимодействием щелочного раствора пероксида водорода с газообразным хлором.

Прямое определение синглетного кислорода возможно по его очень слабой

флюоресценция
так называемых димолей синглетного кислорода (одновременная эмиссия двух молекул синглетного кислорода при столкновениях) как красное свечение при 634 нм.

Молекулы хлорофилла способны под действием света эффективно образовывать триплетное возбужденное состояние хлорофилла и таким путём сенсибилизировать образование синглетного кислорода. Полагают, что одна из функций полиенов, в первую очередь, каротиноидов, в фотосинтетических системах — предотвращать повреждения, вызываемые образованием синглетного кислорода, путём диссипации избыточной световой энергии, попадающей на фотосинтетические компоненты клеток, путём дезактивации возбужденных молекул хлорофилла в триплетном состоянии, либо путём прямого тушения молекул синглетного кислорода. Существует гипотеза, что синглетный кислород образуется при действии ионизирующего излучения.

В биологии млекопитающих синглетный кислород рассматривают как одну из особых форм активного кислорода. В частности, эту форму связывают с окислением холестерина и развитием сердечно-сосудистых изменений. Антиоксиданты на основе полифенолов и ряд других могут снижать концентрацию активных форм кислорода и предотвращать такие эффекты.

Наиболее интригующими оказались недавние заключения европейских исследователей о том, что молекулы синглетного кислорода могут оказаться важнейшими регуляторами клеточной жизнедеятельности, существенно определяющими механизм инициации апоптоза [Vargas F., 2007].

Литература