Эта статья входит в число хороших статей

Структура Холлидея

Материал из Википедии — свободной энциклопедии
Неподвижная структура Холлидея

Структу́ра Холлиде́я

нуклеотидов, располагающихся в непосредственной близости от точки соединения. Структура названа в честь английского молекулярного биолога Робина Холлидея[англ.]
, который предположил её существование в 1964 году.

В живых

РНК
.

Неподвижные структуры Холлидея с несимметричными последовательностями, которые фиксируют структуру в строго определённом положении, были созданы искусственно с целью изучения их структуры как модели природных структур Холлидея. Позднее такие структуры нашли применение в качестве основных строительных структурных блоков в

молекулы
с высокой степенью структурной жёсткости.

Структура

Стэкинг в структурах Холлидея

Структура Холлидея со стэкингом, объединяющим четыре цепи в два двуцепочечных домена. Синяя и красная цепи сохраняют почти спиральную структуру, а жёлтая и зелёная переходят из одного двуцепочечного домена в другой
Структура Холлидея без стэкинга
Три различных конформера структуры Холлидея. Наверху расположен конформер без стэкинга, а два нижних конформера различаются тем, какие пары цепей связаны посредством коаксиального стэкинга: в левом конформере это пары синяя—красная и пурпурная—голубая цепи, а в правом — красная—голубая и синяя—пурпурная. Ближайшие к точке соединения нуклеотиды определяют то, какой из конформеров со стэкингом будет преобладать

Структуры Холлидея могут существовать в виде различных конформационных

электростатического отталкивания отрицательно заряженных остовов цепей. В присутствии уже хотя бы 0,1 мМ Mg2+ электростатическое отталкивание нейтрализуется, и преобладают структуры со стэкингом[2]
.

Формы, лишённые стэкинга, имеют почти плоскую квадратную структуру. Конформеры со стэкингом состоят из двух двуцепочечных доменов, расположенных под углом 60° по правилу правой руки. Две из четырёх цепей (по одной из каждого домена) сохраняют спиральную структуру, а две другие переходят из одного домена в другой антипараллельным[англ.] образом[2].

Два возможных конформера со стэкингом различаются тем, в каких именно цепях происходит стэкинг. Преобладание одной из форм в значительной мере определяется конкретной последовательностью нуклеотидов вблизи точки соединения. Некоторые из этих последовательностей таковы, что два конформера находятся в

фосфатов в точке соединения[2]
.

В соединениях Холлидея с симметричными последовательностями точка соединения четырёх цепей (точка ветвления) может перемещаться по модели случайного блуждания. Скорость перемещения точки ветвления значительно варьирует в зависимости от концентрации ионов: если в отсутствие ионов продолжительность одного акта смещения составляла 0,3−0,4 мс, то в присутствии 10 мМ Mg2+ она составляла 270−300 мс. Изменение скорости связано с образованием структур со стэкингом вместо структур без стэкинга[2].

Если в соединении Холлидея происходит одноцепочечный разрыв, то точка соединения принимает перпендикулярную ориентацию и образуется форма со стэкингом (см. рис.)[2].

Соединения Холлидея из РНК принимают антипараллельную конформацию со стэкингом при высоких концентрациях магния, перпендикулярную конформацию со стэкингом при средних концентрациях и параллельную конформацию со стэкингом при низких концентрациях; однако даже при малых концентрациях кальция они принимают антипараллельную структуру[2].

Биологические функции

Два возможных механизма гомологичной рекомбинации у эукариот
Процесс миграции ветвей сопровождается перемещением точки ветвления

Соединение Холлидея является ключевым интермедиатом, образующимся при гомологичной рекомбинации, а также при сайт-специфичной рекомбинации[англ.], в которой принимают участие интегразы. Кроме того, оно образуется при репарации двуцепочечных разрывов. Наконец, крестообразные структуры, включающие соединения Холлидея, могут образовываться с целью ослабления спирального напряжения в симметричных последовательностях в суперспиралях ДНК[3]. Четырёхцепочечные структуры, встречающиеся в некодирующих РНК, например, в сплайсосомной РНК U1[англ.] и содержащем шпильку рибозиме вируса кольцевой пятнистости табака[англ.], обычно содержат неспаренные нуклеотиды между двуцепочечными участками и потому, строго говоря, не являются соединениями Холлидея[2].

В ходе гомологичной рекомбинации соединения Холлидея образуются между идентичными или почти идентичными последовательностями, в результате чего цепи располагаются симметрично относительно центральной точки ветвления. Это позволяет происходить процессу миграции ветвей[англ.], при котором цепи перемещаются через точку соединения[2]. Разрезание, или разрешение структуры Холлидея может осуществляться двумя путями, один из которых приводит к кроссинговеру, при котором образуются две рекомбинантные цепи, а другой — к конверсии генов, в результате которой образуется только одна рекомбинантная цепь[4].

Многие

белки могут распознавать и искажать структуру соединения Холлидея. Таковы, например, ферменты, которые способны к разрушению соединений Холлидея[англ.], иногда зависимым от последовательностей образом. Эти белки по-разному нарушают структуру соединения Холлидея, часто переводя соединение Холлидея в конформацию без стэкинга, разрушая центральные пары оснований и/или изменяя углы между четырьмя цепями. Другие белки, распознающие соединения Холлидея — белки точки ветвления, которые усиливают темпы рекомбинации на порядок, а также сайт-специфичные рекомбиназы[2]. У прокариот ферменты, разрешающие соединения Холлидея (резольвазы), делятся на два семейства — интегразы и нуклеазы. Эти белки структурно схожи, несмотря на отсутствие консервативности в последовательностях[4]
.

У эукариот репарация двуцепочечных разрывов посредством гомологичной рекомбинации может осуществляться двумя различными путями: путём репарации двуцепочечных разрывов (DSBR), часто также называемым моделью двойного соединения Холлидея, и путём синтезозависимого выпрямления цепей (SDSA)

ДНК, более длинный 5'-конец антисмысловой цепи вновь связывается со смысловой цепью. Далее происходит синтез недостающих участков ДНК с использованием в качестве матриц сестринской хроматиды из другой гомологичной хромосомы. Когда в конце заполнения брешей разъединённые концы сестринских хроматид соединяются друг с другом, образуются две структуры Холлидея, которые потом разрешаются при помощи разнообразных белков[6]
.

У

АТР для перемещения соединения. После этого соединения Холлидея должно разрешиться на два раздельных дуплекса ДНК, возвращая исходное или рекомбинированное состояние. В миграции цепей участвуют белки RuvA и RuvB, в то время как RuvC разрешает соединение Холлидея[8][2]
.

Гомологичная рекомбинация описана у нескольких групп

вирусом гриппа), более спорная[10]
.

Разрешение соединений Холлидея

У

мутанты, лишённые и MLH3, и MMS4, демонстрировали значительное снижение частоты кроссинговера по сравнению с диким типом; впрочем, разъединение хромосом в большинстве случаев происходило без ошибок, и жизнеспособность спор дрожжей была довольно высокой (62 %)[14][14]
.

Хотя белок MUS81 является компонентом малого пути кроссинговера при мейозе у почкующихся дрожжей, растений и позвоночных, у инфузории Tetrahymena thermophila он задействован в необходимом, но не доминирующем пути кроссинговера. У делящихся дрожжей Schizosaccharomyces pombe путь с участием MUS81 является доминирующим механизмом кроссинговера[15].

Белки MSH4 и MSH5 образуют гетеродимер у человека и дрожжей[16][17][18]. У дрожжей он облегчает кроссинговер между гомологичными хромосомами при мейозе[16]. Комплекс MSH4[англ.]/MSH5[англ.] связывает и стабилизирует двойные соединения Холлидея, способствуя их разрешению с образованием рекомбинантных цепей. У мутантов S. cerevisiae с частично функциональным MSH4 количество кроссинговеров на геном снижено на 30 %, и во многих случаях мейоз не сопровождается рекомбинацией. Тем не менее, споры этого мутанта жизнеспособны, поэтому разделение гомологичных хромосом происходит правильно. Таким образом, у S. cerevisiae разделение хромосом при мейозе не целиком зависит от кроссинговера[19].

Использование в ДНК-нанотехнологиях

Строение супрамолекулярного комплекса DX, содержащего два двуцепочечных домена и две структуры Холлидея

нанотехнологий. Разветвлённые структуры ДНК используются в качестве элементарных единиц для создания более сложных спроектированных структур. В состав многих таких структур ДНК входят соединения Холлидея. Одиночные соединения Холлидея слишком гибки для того, чтобы быть способными к сборке в длинные упорядоченные ряды, поэтому в качестве жёстких единиц для сборки крупных единиц используются структурные мотивы[англ.], содержащие несколько соединений Холлидея[20][21]
.

Строение элементарной треугольной единицы, содержащей три соединения Холлидея (а), и кристаллов (b, c), построенных из этих единиц[22]

Из таких мотивов наиболее часто используется комплекс двойного кроссинговера (DX), который содержит два соединения Холлидея, расположенных близко друг к другу, в результате чего образуется жёсткая структура, которая может самостоятельно собираться в ряды более высокого порядка. В молекуле DX соединения Холлидея ориентированы так, что их двуцепочечные участки располагаются бок о бок, а не под более предпочтительным углом 60°. Комплекс можно спроектировать таким образом, чтобы соединения располагались в параллельной или антипараллельной ориентации, однако на практике антипараллельная ориентация более удобна, и параллельная используется редко[20][21].

Структурный мотив DX является элементарным строительным блоком в методе ДНК-оригами[англ.], который используется для создания более крупных дву- и трёхмерных структур произвольной формы. Сборка длинных протяжённых «лент» осуществляется не из отдельных единиц DX, а из двуцепочечных нитей ДНК; эти нити укладываются в правильную форму при помощи вспомогательных цепей, которые образуют соединения Холлидея как цепи, участвующие в кроссиновере[23].

Некоторые строительные единицы, используемые в ДНК-нанотехнологиях, сохраняют присущий соединениям Холлидея угол 60°. Например, в таких единицах 4 соединения Холлидея могут образовывать параллелограмм. Эта структура интересна тем, что она позволяет непосредственно визуализировать угол в соединении при помощи атомно-силовой микроскопии. Блоки из трёх соединений Холлидея, собранных в треугольник, использовались для создания трёхмерных периодических структур, применявшихся в рентгеноструктурном анализе биомолекул[20][21].

История изучения

В 1964 году английский учёный

аллелями) одного гена. Он предположил, что в клетке должен существовать механизм исправления неспаренных оснований, и такой механизм, действительно, был открыт[4]. До модели Холлидея господствовала модель избирательного копирования, согласно которой новая цепь синтезировалась непосредственно из частей различных родительских цепей[24][25]
.

В оригинальной модели Холлидея гетеродуплексная ДНК образовывалась в обеих гомологичных хромосомах, однако экспериментальные данные, полученные на дрожжах, опровергли это. В 1975 году

Метью Мезельсон и Чарли Рэддинг обновили модель и ввели идею миграции цепей[24]. Дальнейшие наблюдения привели в 1980-е годы к разработке альтернативных моделей рекомбинации — таких, как модель двуцепочечных разрывов и модель выпрямления цепей. Третья модель — модель синтезозависимого выпрямления цепей — не предполагала образования соединений Холлидея[4]
.

Первое экспериментальное доказательство существования соединений Холлидея было получено в конце 1970-х годов при помощи

ферменты, отвечающие за инициацию образования соединений Холлидея и связывание с ними. В 1983 году Надриан Симэн впервые получил искусственные структуры Холлидея из синтетических олигонуклеотидов, что открыло возможности для более детального изучения свойств структур Холлидея. Многие ранние исследования соединений Холлидея были основаны на таких методах, как электрофорез, FRET[англ.] и других. В 1990-х годах стали доступны кристаллография и ЯМР нуклеиновых кислот[англ.], а также компьютерные методы молекулярного моделирования[2][4][26]
.

Первоначально

генетики предполагали, что для соединения Холлидея более характерна параллельная, а не антипараллельная конформация, поскольку в этом случае гомологичные дуплексы располагались бы наиболее близко друг к другу. Химический анализ, проведённый в 1980-х годах, показал, что преобладает антипараллельная конформация; эти данные показались столь противоречивыми, что поначалу сам Робин Холлидей отверг их[2]. Впоследствии представление об антипараллельной конформации получило большее признание благодаря данным рентгеноструктурного анализа молекул in vitro. В условиях in vivo ситуация менее однозначна, так как связывающиеся с соединениями Холлидея белки могут менять их конформацию[4]
.

Концептуальные основы использования соединений Холлидея в ДНК-нанотехнологиях были заложены Симэном в начале 1980-х годов. В 1982—1983 годах были разработаны и созданы неподвижные соединения Холлидея[27].

Примечания

  1. Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др.. — М.—Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — С. 466—483. — 808 с. — ISBN 978-5-4344-0112-8.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Lilley D. M. Structures of helical junctions in nucleic acids. (англ.) // Quarterly reviews of biophysics. — 2000. — Vol. 33, no. 2. — P. 109—159. — PMID 11131562. [исправить]
  3. Bloomfield, Victor A.; Crothers, Donald M.; Tinoco, Jr., Ignacio. Nucleic acids: structures, properties, and functions (англ.). — Sausalito, California: University Science Books, 2000. — P. 468. — ISBN 0935702490.
  4. ]
  5. ]
  6. Hartel, Daniel L.; Jones, Elizabeth W. Chapter 6: Molecular Biology of DNA Replication and Recombination // Genetics: Analysis of Genetics and Genomes (англ.). — Burlington: Jones & Bartlett[англ.], 2009.
  7. ]
  8. Kowalczykowski S. C. Initiation of genetic recombination and recombination-dependent replication. (англ.) // Trends in biochemical sciences. — 2000. — Vol. 25, no. 4. — P. 156—165. — PMID 10754547. [исправить]
  9. Fleischmann Jr, W. R. Chapter 43 // Medical Microbiology (неопр.). — 4th. — University of Texas Medical Branch at Galveston, 1996. — ISBN 0-9631172-1-1.
  10. ]
  11. ]
  12. ]
  13. ]
  14. ]
  15. ]
  16. 1 2 Pochart P., Woltering D., Hollingsworth N. M. Conserved properties between functionally distinct MutS homologs in yeast. (англ.) // The Journal of biological chemistry. — 1997. — Vol. 272, no. 48. — P. 30345—30349. — PMID 9374523. [исправить]
  17. ]
  18. Bocker T., Barusevicius A., Snowden T., Rasio D., Guerrette S., Robbins D., Schmidt C., Burczak J., Croce C. M., Copeland T., Kovatich A. J., Fishel R. hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. (англ.) // Cancer research. — 1999. — Vol. 59, no. 4. — P. 816—822. — PMID 10029069. [исправить]
  19. ]
  20. 1 2 3 Seeman N. C. Nanotechnology and the double helix. (англ.) // Scientific American. — 2004. — Vol. 290, no. 6. — P. 64—69. — PMID 15195395. [исправить]
  21. ]
  22. ]
  23. ]
  24. 1 2 Stahl F. W. The Holliday junction on its thirtieth anniversary. (англ.) // Genetics. — 1994. — Vol. 138, no. 2. — P. 241—246. — PMID 7828807. [исправить]
  25. Advances in genetics (неопр.). — Academic Press, 1971. — ISBN 9780080568027. Архивировано 16 мая 2016 года.
  26. ]
  27. Pelesko, John A. Self-assembly: the science of things that put themselves together (англ.). — New York: Chapman & Hall/CRC, 2007. — P. 201, 242, 259. — ISBN 978-1-58488-687-7.