Термометр

Термо́метр (греч. θέρμη «тепло» + μετρέω «измеряю»), также гра́дусник — измерительный прибор для измерения температуры различных тел и сред (воздуха, почвы, воды и т. д.). По принципу измерения существует несколько видов термометров:
- жидкостные - ртутные, галинстановые, спиртовые (спирт подкрашен каким-либо красителем, как правило красным или синим);
- механические - биметаллические;
- электронные - на основе термопары или терморезистора - термометр сопротивления;
- оптические;
- газовые
- инфракрасные[англ.].
История изобретения
Изобретателем термометра принято считать
Изобретение термометра также приписывают лорду

Термометры с жидкостью описаны в первый раз в
Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.
В
Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии барометра. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.
Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог Андерс Цельсий в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий «Observations of two persistent degrees on a thermometer» рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от атмосферного давления. Он предположил, что отметку 0 (точку кипения воды) можно откалибровать, зная, на каком уровне относительно моря находится термометр.
Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° — кипения воды). В таком виде шкала оказалась очень удобной, получила широкое распространение и используется до нашего времени.
По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим — шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции — под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.
Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.
После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.
В 1848 г. английский физик
Жидкостные термометры
Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это
Жидкостные термометры подразделяются на ртутные и термометры с не ртутным заполнением. Последние применяются не только из-за экономических соображений, но и также из-за использования широкого диапазона температур. Так, в термометрии, в качестве нертутного заполнения термометров используются вещества: спирты (этиловый, метиловый, пропиловый), пентан, толуол, сероуглерод, ацетон, таллиевая амальгама и галлий.[1]
В связи с тем, что с 2020 года ртуть под запретом[2][3] из-за её опасности для здоровья[4], во многих областях деятельности ведётся поиск альтернативных наполнений для бытовых термометров.
Такой заменой стал галинстан (сплав металлов: галлия, индия, олова и цинка). Галлий применяют для измерения высоких температур. Также ртутные термометры все чаще с большим успехом заменяются платиновыми или медными термометрами сопротивления. Также все шире применяются и другие типы термометров.
- Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация
-
Уличный жидкостный термометр
-
Ртутный медицинский термометр
-
Галинстановый медицинский термометр
Механические термометры
Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлический стержень или лента из биметалла скрученная в спираль. При изменении температуры стержень меняет свою длину, приводя в действие исполнительный механизм.
Биметаллическая пластина меняет радиус изгиба, а поскольку она смотана в спираль, это выглядит как вращение конца спирали, где и закреплена стрелка.
-
Оконный механический термометр
-
Демонстрация работы механического термометра
Электронные термометры
Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.
Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).
Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.
Отсюда сопротивление при T °C, сопротивление при 0 °C, и константы (для платинового сопротивления) —
- см. Эффект Пельтье
-
Уличные электронные часы с термометром
-
Настенные электронные часы с термометром
-
Домашняя метеостанция
-
Электронный медицинский термометр
Оптические термометры
Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.
Инфракрасные термометры
Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В 2014 году Россия подписала Минаматскую конвенцию о ртути, и к 2030 году Россия откажется от производства ртутных термометров.[5]В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.
-
Инфракрасный термометр
-
мининфракрасный термометр
Технические термометры
Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом, во всех жизненных сферах.
Выделяют такие виды технических термометров:
- термометры технические жидкостные;
- термометры биметаллические ТБ, ТБТ, ТБИ;
- термометры сельскохозяйственные ТС-7А-М;
- термометры максимальные СП-83;
- термометры для спецкамер низкоградусные СП-100;
- термометры специальные вибростойкие СП-1;
- термометры ртутные электроконтактные ТПК;
- термометры лабораторные ТЛ;
- термометры для нефтепродуктов ТН;
- термометры для испытаний нефтепродуктов ТИН.
Максимальные и минимальные термометры

По виду регистрации предельного значения температуры термометры разделяются на максимальные, минимальные и без регистрации[6]. Минимальный/максимальный термометр показывает минимальное/максимальное значение температуры, достигнутое с момента сброса. Так, медицинский ртутный термометр является максимальным — он показывает максимальное значение температуры, достигнутое в ходе измерения, благодаря узкой «шейке» между ртутным резервуаром и капилляром, в которой при уменьшении температуры столбик ртути разрывается, и ртуть не уходит обратно в резервуар из капилляра. Перед измерением фиксирующий (максимальный или минимальный) термометр должен быть сброшен (приведён к значению заведомо ниже/выше измеряемой температуры).
Газовый термометр

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля.
В 1787 году Шарль установил, что одинаковое нагревание любого газа приводит к почти одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по
В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаков, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного вещества, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.
Объем рынка
В 2024 году в России было продано более 11,2 млн медицинских термометров на сумму 3,5 млрд рублей, по данным базы «Аудит розничных продаж медицинской техники в России (total sell out)» компании RNC Pharma[7].
См. также
- Термометр сопротивления
- Термохимические краски
- Аквариумный термометр
- Манометрический термометр
- Пирометр
- Тепловизор
- Дилатометр
- Конус Зегера
- Цветовая температура
- Абсолютная термодинамическая температура
Примечания
- ↑ Геращенко О.А., Федоров В.Г. Тепловые и температурные измерения. — Киев: "Наукова думка", 1965. — С. 20—22. — 303 с.
- ↑ Ртуть с 2020 года будет под запретом во всем мире Архивная копия от 24 сентября 2015 на Wayback Machine / Карлотта Клеричи | Corriere della Sera, Инопресса, 31 октября 2013
- ↑ Россия подписала конвенцию о запрете ртути в быту. РИА Новости. 25 сентября 2014. Архивировано 25 сентября 2014. Дата обращения: 25 сентября 2014.
- ↑ A Review of Events That Expose Children to Elemental Mercury in the United States Архивная копия от 19 сентября 2015 на Wayback Machine / Environ Health Perspect; DOI:10.1289/ehp.0800337: «Exposure to small spills from broken thermometers was the most common scenario»
- ↑ Отказ России от ртути и люминесцентных ламп . Дата обращения: 4 ноября 2018. Архивировано 4 ноября 2018 года.
- ↑ Чем максимальный и минимальный термометры отличаются от обычного . Дата обращения: 26 ноября 2013. Архивировано 2 декабря 2013 года.
- ↑ В декабре 2024 года потребление медицинских термометров в России упало на рекордные 40,5% | Remedium.ru . remedium.ru (2 апреля 2025). Дата обращения: 6 февраля 2025.
Литература
- Гельфер Я. М. История и методология термодинамики и статистической физики. — Изд. 2-е, перераб. и дополн.. — М.: Высшая школа, 1981. — 536 с.
- Лермантов В. В. Термометр // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика. — 5 изд., испр.. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
Ссылки
- Европа наложила запрет на ртуть в термометрах / membrana, 11 июля 2007
- Термометр медицинский цифровой прецизионный / Мир Измерений, 01.09.2010[неавторитетный источник]
- Ртутный термометр (Домашний советник) [неавторитетный источник]