Фотосистема I

Фотосисте́ма I (первая фотосистема, фотосистема один, ФСI), или пластоциани́н-ферредокси́н-оксидоредукта́за — второй функциональный комплекс электрон-транспортной цепи (
История открытия
Нециклический транспорт электронов начинается с того, что
Первые данные указывающие на существование ФСI появились в 1950-х годах, но в то время никто ещё не мог оценить значимость этих открытий
После этого начались систематические попытки физического выделения фотосистемы I, определения её трёхмерной структуры и тонкого строения. В 1966 году начался бум исследований в этой области: Андерсон и Бордман подвергали мембраны хлоропластов воздействию
В 1968 году Рид и Клайтон смогли выделить реакционный центр фотосистемы I из пурпурных бактерий, что значительно подстегнуло исследования оксигенного фотосинтеза. Однако, открытым оставался вопрос: что из выделенного являлось истинным реакционным центром, что антенными комплексами, а что дополнительными субъединицами. Долгое время эффективное выделение реакционного центра фотосистемы I оставалось неразрешённой проблемой. В конце-концов оказалось, что легче всего это сделать у цианобактерий, поскольку у них отсутствовали интегрированные в мембрану внешние антенны. После многочисленных попыток с разными видами, выяснилось, что самыми многообещающими в этом отношение видами являются представителями Synechocystis и Synechococcus, поскольку фотосистема I, выделенная из Thermosynechococcus elongatus давала очень стабильный реакционный центр, пригодный для кристаллизации и исследования методом рентгеноструктурного анализ[2].
Отличия от фотосистемы II
Основная функция фотосистемы II — генерация сильного окислителя, который инициирует окисление воды и передачу её электронов на мембранный переносчик. Основная функция фотосистемы I — насытить эти низкоуровневые электроны энергией, чтобы с их помощью осуществить восстановление НАДФ+. Поскольку энергия суммарного процесса слишком велика, чтобы осуществить его в рамках одного реакционного центра, в ходе эволюции появились две фотосистемы, которые раздельно осуществляют разные части этой реакции. Их специфические функции и определяют особенности их строения. Так, фотосистема I — симметрична, то есть в ней работают две ветви электронного транспорта, что делает его значительно более быстрым, в то время как фотосистема II — асимметрична и обладает только одной рабочей ветвью, что замедляет транспорт электронов, но делает его более управляемым. Обе фотосистемы значительно отличаются по строению антенн, дополнительных субъединиц, способов регуляции и своему положению в мембране[3]. Так, фотосистема I обладает интегральной антенной, хлорофиллы которой расположены непосредственно на главных белках комплекса — А и B, в то время как у фотосистемы II они вынесены на внешние белки CP47 и CP43. По количеству дополнительных малых регуляторных субъединиц ФС II значительно превосходит ФС I, что связано с необходимостью тонкой регуляции процесса окисления воды, который потенциально крайне опасен для клетки. Этим же объясняется неоднородное распределение фотосистем в мембране тилакоида: в то время как ФС I располагается преимущественно в области маргинальных, торцевых и стромальных мембран, ФС II практически полностью находится в области спаренных мембран, что обеспечивает клетке дополнительную защиту от продуцируемых ею активных форм кислорода[4].
Главное отличие фотосистемы II от фотосистемы I — это наличие большого обращённого в люмен домена, который содержит марганцевый кластер и окружающие его защитные белки. Именно здесь происходит процесс фотохимического окисления воды, сопровождаемый выделением кислорода и протонов[3].
Структурная организация фотосистемы I
Фотосистема I | |
---|---|
![]() Растительная Фотосистема I | |
Идентификаторы | |
Шифр КФ | 1.97.1.12 |
Базы ферментов | |
IntEnz | IntEnz view |
BRENDA | BRENDA entry |
ExPASy | NiceZyme view |
MetaCyc | metabolic pathway |
KEGG | KEGG entry |
PRIAM | profile |
PDB structures | RCSB PDB PDBe PDBj PDBsum |
Поиск | |
PMC | статьи |
PubMed | статьи |
NCBI | NCBI proteins |
![]() |
PsaA_PsaB | |
---|---|
![]() Структура Фотосистемы I из цианобактерии. Показана интегральная часть(ядро) и белки внешней антенны. | |
Идентификаторы | |
Символ | PsaA_PsaB |
Pfam | PF00223 |
InterPro | IPR001280 |
PROSITE | PDOC00347 |
SCOP | 1jb0 |
SUPERFAMILY | 1jb0 |
TCDB | 5.B.4 |
OPM superfamily | 2 |
OPM protein | 1jb0 |
Доступные структуры белков | |
Pfam | структуры |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | 3D-модель |
![]() |
Фотосистема I состоит из следующих белковых субъединиц и кофакторов[5][6][1]:
Субъединицы | Описание |
---|---|
A | 83 кДа , 751 аминокислотных остатков
|
B | 82,5 кДа, 735 аминокислотных остатков |
C | 8,9 кДа, перенос электрона с П700 на ферредоксин
|
D | 19 кДа, обеспечивает связь с ферредоксином |
E | 7,5 кДа, обеспечивает связь с ферредоксином |
F | 19 кДа, взаимодействует с пластоцианином |
G | 8 кДа, только у растений |
H | 10 кДа, у растений предотвращает формирования тримеров ФСI, обеспечивает взаимодействие со светособирающим комплексом II |
I | 5 кДа, у растений взаимодействует с PsaH, связывается со светособирающим комплексом II; у цианобактерий играет важную роль в формировании тримеров ФСI |
J | 5 кДа, несёт три молекулы хлорофилла и выполняет структурную функцию |
K | 8.5 кДа, несёт две молекулы хлорофилла и выполняет структурную функцию |
L | 16 кДа, у цианобактерий участвуют в формировании тримера ФСI; у растений она связывает со светособирающим комплексом II |
M | 3,5 кДа, только у цианобактерий; расположена в области контакта ФСI в тримере |
N | 9 кДа, есть у растений и водорослей |
O | только у растений; функция неизвестна |
X | 4 кДа, только у цианобактерий |
Пигменты | |
Хлорофилл a | 95 молекул в антенной системе |
Хлорофилл а | 2 молекулы дополнительного хлорофилла а |
Хлорофилл a0 | Хлорофилл а695 — первичный акцептор электронов |
Хлорофиллы а и a' | специальная пара П700 |
β-Каротин | 22 молекулы |
Коферменты /Кофакторы
|
|
Fa | Fe4S4 железосерный кластер (ЭТЦ) |
Fb | Fe4S4 железосерный кластер (ЭТЦ) |
Fx | Fe4S4 железосерный кластер (ЭТЦ) |
Ферредоксин
|
Переносчик электронов |
Пластоцианин | Растворимый белок, содержащий атом меди |
QK-A | Филлохинон — акцептор электронов в ЭТЦ (субъединица А) |
QK-B | Филлохинон — акцептор электронов в ЭТЦ (субъединица В) |
Ca2+ | ион кальция |
Mg2+ | ион магния |
Основная функция ФСI — передача энергии света на электрон, перенос электрона от пластоцианина к ферредоксину[7]. ФСI содержит свыше 110 кофакторов, значительно больше чем фотосистема II[8]. Каждый из этих компонентов имеет широкий спектр функций. Основные компоненты электрон-транспортной цепи ФСI — главный донор возбуждённых электронов П700 (хлорофильный
Структурно ФСI представляет собой гетеродимер двух интегральных белковых комплексов — А и В (у всех растений кодируются хлоропластными генами PsaA и PsaB). Белки А и В присоединяют димер Р700, по одной молекуле мономера хлорофилла а (Хл695) — первичного акцептора электронов А0, по одному дополнительному хлорофиллу а и по одной молекуле филлохинона (А1). Два набора дополнительных хлорофиллов а, первичных акцепторов электрона и филлохинонов формируют две почти симметричные ветви транспорта электронов от Р700 к Fx. В отличие от реакционных центров зелёных и пурпурных бактерий и ФСII, где из двух ветвей функционирует лишь одна, в ФСI активны обе ветви электронного транспорта, хотя они и не идентичны[1].Белок А гомологичен белкам D1+СP43 (молекулярная масса белка А соответствует сумме молекулярных масс белков D1 и СP43) из фотосистемы II, а белок В гомологичен белкам D2+CP47 соответственно[10].
Обе субъединицы содержат 11 .
Следует особо подчеркнуть, что перенос электрона осуществляется в соответствии с термодинамическим потенциалом. Увеличение окислительно-восстановительных потенциалов в цепи акцепторов обеспечивает быстрое снижение энергии, что предотвращает возврат электрона к пигменту и бесполезную трату энергии электронного возбуждения. Благодаря этому энергия возбуждения эффективно используется для разделения зарядов[14].
Пластоцианин

Пластоцианин — маленький, подвижный белок с молекулярной массой около 10,5 кДа. К его центральному атому Сu присоединяются остатки цистеина и метионина, а сбоку его стабилизируют два остатка гистидина. При обратимой смене валентности Cu2+ ↔ Cu+1 пластоцианин либо поглощает один электрон, либо отдаёт его. Пластоцианин является аналогом цитохрома c, который выполняет схожую функцию в дыхательной цепи митохондрий[6].
Он принимает электрон от
У некоторых водорослей и цианобактерий при недостатке меди в среде пластоцианин не образуется, вместо него синтезируется и выполняет его функции цитохром c-553[18].
- Пластоцианин (PC) отдаёт один электрон окисленному П700+ и восстанавливает его до исходного состояния:
Специальная пара П700
П700 (в
- В соответствии со следующим уравнением П700 поглощает квант света и переходит в фотовозбуждённое состояние, в результате чего один из его электронов переходит с основного подуровня S0 на первый синглетный подуровень S1:
Хлорофилл А0
A0 — первый акцептор электронов в фотосистеме I. Именно здесь происходит первичное фотохимическое разделение зарядов между фотовозбуждённым П700* и A0. Его максимум поглощения составляет 695 нм (Хл а695), что объясняется его взаимодействием с окружающими аминокислотными остатками[19]. Его редокс-потенциал в восстановленном состоянии −1,1 В[1].
- Фотовозбуждённый П700* отдаёт один электрон хлорофиллу A0, в результате чего происходит разделение зарядов, и образуется первичная радикальная пара:
Филлохинон A1
Следующий акцептор — это
.Железосерные кластеры
Железосерные кластеры ФСI имеют форму куба с четырьмя атомами железа и четырьмя атомами серы, составляющими его восемь вершин. Все три кластера связаны с белками ФСI через остатки цистеина[24]. Fx (Eо‘ = −0,70 В) окисляет восстановленный А1. Дальнейший транспорт осуществляют железосерные кластеры Fa, и Fb, характеризующиеся низкими окислительно-восстановительными потенциалами (-0,59 и −0,55 В соответственно). Множество экспериментов выявило несоответствие между разными теориями, описывающими расположение и работу железосерных кластеров[24]. Однако большинство результатов позволяет сделать некоторые общие выводы. Во-первых, Fx, Fa, и Fb образуют треугольник, и Fa располагается ближе к Fx чем Fb[24]. Во-вторых, транспорт электронов начинается с Fx через Fa к Fb, или же через Fa к Fb. До сих пор ведутся споры о том, какой из двух кластеров осуществляет перенос электрона на ферредоксин[24].
Ферредоксин
Ферредоксин — это водорастворимый белок с молекулярной массой 11 кДа и содержащий Fe2S2 центр
Светособирающий комплекс

Светособирающие комплексы состоят из молекул
.Циклический транспорт электронов

При слишком сильном освещении и/или закрытых
Циклическое фотофосфорилирование
Вначале электрон неким образом перемещается от восстановленного ферредоксина на пул пластохинонов. Точный механизм этого процесса не известен. Полагают, что эту реакцию осуществляет особый фермент — ферредоксин-пластохинон-оксидоредуктаза. Затем от пластохинона через
Ещё один фермент, возможно принимающей участие а этом процесс — это
Псевдоциклический транспорт
При очень активном восстановлении пула ферредоксинов происходит сброс их электронов на
Ещё один фермент, участвующий в псевдоциклическом транспорте, это терминальная оксидаза хлоропластов, гомологичная альтернативной оксидазе растительных митохондрий. Она окисляет пул пластохинонов с участием кислорода, образуя воду и рассеивая энергию в форме тепла[39].
Локализация в мембране тилакоида

Фотосистема I находится в стромальных тилакоидах (32 %), а также в маргинальных (36 %) и торцевых (32 %) областях гран. Такое расположение обусловлено плотностью её поверхностного заряда и силами электростатического отталкивания с другими комплексами[40].
У
Белок Ycf4
Трансмембранный белок Ycf4, обнаруженный в мембране тилакоида, жизненно необходим для функционирования фотосистемы I. Он участвует в сборке компонентов комплекса, без него фотосинтез становится неэффективным[43].
Зелёные серобактерии и эволюция ФСI
Галерея
-
Положение хлорофиллов и кофакторов в фотосистеме I.
-
Тример фотосистемы I
-
ЭТЦ фотосистемы I
-
Фотосистемы I и реакционный центр бактерии.
-
Модель фотосистемы I.
См. также
- Цитохром b6f-комплекс
- Терминальная оксидаза
- Фотосистема II
- Фотосинтез
Примечания
- ↑ 1 2 3 4 5 Ермаков, 2005, с. 173-175.
- ↑ 22 декабря 2015 года.
- ↑ 1 2 Ермаков, 2005, с. 121.
- .
- 4 ноября 2018 года.
- ↑ 1 2 3 4 Страсбургер, 2008, с. 117.
- .
- ↑ HongQi Yu', Ingo Gortjohann, Yana Bukman, Craig Yolley', Devendra K. Chauhan, Alexander Melkozerov and Petra Fromme. Structure and funcnions of photosystems I and II (неопр.). Архивировано 1 января 2017 года.
- .
- ↑ Хелдт, 2011, с. 99.
- .
- .
- .
- ↑ Ермаков, 2005, с. 157.
- ↑ PDB 3BQV . Дата обращения: 14 января 2015. Архивировано 24 февраля 2017 года.
- 15 октября 2000 года.
- 30 августа 2017 года.
- ↑ Zhang L1, McSpadden B., Pakrasi H.B., Whitmarsh J. Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803 (англ.) // The journal of biological chemistry : journal. — 1992. — September (vol. 267, no. 27). — P. 19054—19059. — PMID 1326543. Архивировано 9 сентября 2017 года.
- ↑ .
- ↑ 1 2 Zeiger, Eduardo; Taiz, Lincoln. Ch. 7: Topic 7.8: Photosystem I // Plant physiology (неопр.). — 4th. — Sunderland, Mass: Sinauer Associates[англ.], 2006. — ISBN 0-87893-856-7.
- .
- ↑ .
- 4 мая 2019 года.
- ↑ 22 января 2019 года.
- ↑ .
- ↑ «The Photosynthetic Process» Архивированная копия . Дата обращения: 5 мая 2009. Архивировано 19 февраля 2009 года.
- 24 сентября 2015 года.
- ↑ 6 мая 2022 года.
- ↑ Кренделева Т. Е., Кукарских Г. П., Тимофеев К. Н., Иванов Б. Н., Рубин А. Б. Ферредоксинзависимый циклический транспорт электронов в изолированных тилакоидах протекает с участием ферредоксин-НАДФ-редуктазы. Доклады академии наук, 2001. 379(5): с. 1-4.
- ↑ Коваленко И.Б., Устинин Д.М., Грачев Н.Е., Кренделева Т.Е., Кукарских Г.П., Тимофеев К.Н., Ризниченко Г.Ю., Грачев Е.А., Рубин А.Б. Экспериментальное и теоретическое исследование процессов циклического электронного транспорта вокруг фотосистемы 1 // Биофизика : журнал. — 2003. — Т. 48, № 4. — С. 656—665. Архивировано 2 апреля 2015 года.
- .
- .
- .
- .
- 9 сентября 2017 года.
- 29 декабря 2014 года.
- ↑ Chaddock, A.M.; Mant, A.; Karnauchov, I.; Brink, S.; Herrmann, R.G.; Klösgen, R.B.; Robinson, C. A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase (англ.) // EMBO J. : journal. — 1995. — Vol. 14, no. 12. — P. 2715—2722. — PMID 7796800. — PMC 398390. Архивировано 22 января 2022 года.
- 18 июля 2015 года.
- 24 сентября 2015 года.
- ↑ Ермаков, 2005, с. 123.
- 20 января 2022 года.
- .
- 7 марта 2016 года.
- ↑ .
Литература
- Зитте П. и др. Ботаника / Под ред. В. В. Чуба. — 35-е изд. — М.: Академия, 2008. — Т. 2. Физиология растений. — 495 с.
- Медведев С. С. Физиология растений. — СПб.: БХВ-Петербург, 2013. — 335 с.
- Физиология растений / Под ред. И. П. Ермакова. — М.: Академия, 2005. — 634 с.
- Хелдт Г. В. Биохимия растений. — М.: БИНОМ. Лаборатория знаний, 2011. — 471 с.
Ссылки
- Информационная система «Фотосинтетическая мембрана»
- «Циклический и нециклический поток электронов.» в онлайн энциклопедии Физиология растений
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |