Хлорофилл a

Материал из Википедии — свободной энциклопедии
Хлорофилл а
Изображение химической структуры
Общие
Систематическое
наименование
'"`UNIQ-​-​nowiki-​00000000-​QINU`"'
Хим. формула C55H72Mg1O5N4
Физические свойства
Молярная масса 893,51 г/моль
Плотность 1,079 г/см³
Термические свойства
Температура
 • плавления 152,3 °С (разлагается)
Химические свойства
Растворимость
 • в воде в воде не растворим
 • в Хорошо растворим в этаноле, простых эфирах, петролейном эфире, ацетоне, C6H6, CHCl3.
Классификация
Рег. номер CAS 479-61-8
PubChem
Рег. номер EINECS
207-536-6
SMILES
InChI
ChEBI 18230
ChemSpider
Безопасность
NFPA 704
NFPA 704 four-colored diamondОгнеопасность 0: Негорючее веществоОпасность для здоровья 0: Не представляет опасности для здоровья, не требует мер предосторожности (например, ланолин, пищевая сода)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствует
0
0
0
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Хлорофи́лл a — особая форма

P700[3]
.

Распространённость хлорофилла a

Хлорофилл a необходим большинству фотосинтезирующих организмов для преобразования энергии света в химическую энергию, но это не единственный пигмент, который может быть использован для фотосинтеза. Все организмы с оксигенным типом фотосинтеза используют хлорофилл a, но имеют разные вспомогательные пигменты, как, например хлорофилл b[2]. В небольших количествах можно обнаружить хлорофилл a у зелёных серобактерий — анаэробных фотоавтотрофов[4]. Эти организмы используют бактериохлорофиллы и некоторое количество хлорофилла a, но не производят кислород[4]. Такой фотосинтез называется аноксигенным.

Структура молекулы

Структура хлорофилла a. Виден длинный углеводородный хвост.

Молекула хлорофилла состоит из кольца хлорина с ионом Mg в центре, радикалов-заместителей в кольце и фитольного хвоста.

Кольцо хлорина

Хлорин

Хлорофилл a состоит из центрального иона магния, заключённого в кольцо из четырёх ионов азота, также известного как хлорин. Хлориновое кольцо — это гетероциклическое соединение, образованное из пирролов, окружающих атом металла. Именно Mg в центре однозначно отличает структуру молекулы хлорофилла от других молекул[5].

Заместители

Структура молекулярного центра хлорофилла a. Зелёной рамкой выделена позиция у третьего атома углерода, где располагается важная для его свойств метильная группа.

В кольце хлорофилла a есть заместители. Каждый тип хлорофиллов характеризуется своими заместителями, и, соответственно, своим спектром поглощения

бактериохлорофиллов более насыщено — в нём не хватает чередования одинарной и двойной связи, что сужает спектр поглощаемого молекулами света[7]
.

Фитольный хвост

К

порфириновому кольцу присоединён длинный фитольный хвост[2]. Это длинный гидрофобный радикал, который прикрепляет хлорофилл a к гидрофобным белкам мембраны тилакоида[2]. Отсоединившись от порфиринового кольца, этот длинный гидрофобный хвост становится предшественником двух биомаркёров — пристана и фитана, оба из которых важны для геохимических
исследований и определения качества нефти.

Биосинтез

В биосинтезе хлорофилла a принимают участие несколько ферментов[8]. Биосинтез бактериохлорофилла a и хлорофилла a осуществляют схожие ферменты, которые при некоторых условиях могут взаимно заменять друг друга[8]. Всё начинается с глутаминовой кислоты, которая превращается в 5-аминолевулиновую кислоту. Затем две молекулы этой кислоты восстанавливаются до порфобилиногена, четыре молекулы которого формируют протопорфирин IX[5]. После формирования протопорфирина фермент Mg-хелатаза катализирует включение иона Mg в структуру хлорофилла a[8]. Далее происходит циклизация радикала в шестом положении кольца и образуется протохлорофиллид, у которого в ходе светозависимой реакции с участием фермента протохлорофиллид-оксидоредуктаза происходит восстановление двойной связи в кольце D[5]. Завершается биосинтез хлорофилла присоединением фитольного хвоста[9].

Реакции фотосинтеза

Поглощение света

Спектры поглощения хлорофиллов a и b. Совместное использование обеих форм увеличивает эффективность поглощения энергии света.

Спектр

Хлорофилл a поглощает свет в

фиолетовой, голубой и красной частях спектра, отражая в основном зелёный цвет, что и придаёт ему характерную окраску. Спектр его поглощения расширяется за счёт вспомогательных пигментов[2] (например, хлорофилла b). В условиях плохой освещённости растения повышают соотношение хлорофилл b/хлорофилл a, синтезируя больше молекул первого, чем второго, и, таким образом, увеличивают производительность фотосинтеза[6]
.

Светособирающая система

Антенный комплекс, передающий энергию света через мембрану тилакоида. Хлорофилл a в реакционном центре — пигмент, способный передавать возбуждённые электроны переносчикам электронов.

Кванты света, поглощённые пигментами, возбуждают их электроны, в результате чего энергия света преобразуется в энергию

P700 в фотосистеме I[10]. P680 и P700 — основные доноры электронов
для электрон-транспортной цепи.

См. также

Примечания

  1. PHOTOSYNTHESIS Архивировано 28 ноября 2009 года.
  2. 1 2 3 4 5 Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. Photosynthesis, Light, and Life // Biology of Plants (англ.). — 7th. — W.H. Freeman[англ.], 2005. — P. 119—127. — ISBN 0-7167-9811-5.
  3. 1 2 Papageorgiou,G, and Govindjee. Chlorophyll a Fluorescence, A Signature of Photosynthesis (англ.). — Springer, 2004. — Vol. 19. — P. 14,48,86.
  4. 18 декабря 2019 года. See pages 9514,48,86.
  5. 1 2 3 Zeiger, Eduardo; Taiz, Lincoln. Ch. 7: Topic 7.11: Chlorophyll Biosynthesis // Plant physiology (англ.). — 4th. — Sunderland, Mass: Sinauer Associates[англ.], 2006. — ISBN 0-87893-856-7.
  6. 1 2 3 Lange, L.; Nobel, P.; Osmond, C.; Ziegler, H. Physiological Plant Ecology I – Responses to the Physical Environment (англ.). — Springer-Verlag, 1981. — Vol. 12A. — P. 67, 259.
  7. Campbell, Mary K.; Farrell, Shawn O. Biochemistry (англ.). — 6th. — Cengage Learning[англ.], 2007. — P. 647. — ISBN 978-0-495-39041-1.
  8. 1 2 3 Suzuki J. Y., Bollivar D. W., Bauer C. E. Genetic Analysis of Chlorophyll biosynthesis (англ.) // Annu. Rev. Genet. — 1997. — Vol. 31, no. 1. — P. 61—89. — . (недоступная ссылка)
  9. Taiz L., Zeiger E., Møller I. M., Murphy A. Figure 7.11.A: The biosynthetic pathway of chlorophyll (2006).
  10. 28 мая 2020 года.