Электростатический потенциал
![]() | В статье не хватает ссылок на источники (см. рекомендации по поиску). |
Электростати́ческий потенциа́л — физическая величина, служащая скалярной энергетической характеристикой электростатического поля и для конкретной рассматриваемой точки равная потенциальной энергии пробного заряда, помещённого в данную точку, отнесённой к величине этого заряда.
Обозначается символом , в
Наряду с напряжённостью электростатического поля является средством его количественного описания. Связан с формулой , где — оператор набла.
Важнейшим физическим соотношением, в котором фигурирует электростатический потенциал, является уравнение Пуассона, для однородной среды имеющее вид ( — плотность заряда, — электрическая постоянная, — диэлектрическая проницаемость, — оператор Лапласа), широко применяемое для расчёта профилей потенциала в пространстве.
За пределами
Определение
Электростатический потенциал равен отношению
- .
Напряжённость электростатического поля и потенциал связаны соотношением[1]
- ,
где интегрирование осуществляется вдоль произвольной кривой от точки 1 до точки 2; ввиду гарантированной
- .
В правой части стоит минус
Неоднозначность
Поскольку электростатический потенциал (как и потенциальная энергия) определён с точностью до произвольной постоянной, то есть с точностью до замены
- ,
и реально измеряемые величины — такие как напряжённости поля, силы, работы — не зависят от выбора константы, непосредственный физический смысл (по крайней мере, пока речь не идёт о квантовых эффектах) имеет не сам электростатический потенциал, а разность потенциалов
- ,
где , — потенциалы в точках 1 и 2, — работа, совершаемая полем при переносе
При этом считается, что все остальные заряды при такой операции «заморожены» — то есть неподвижны во время перемещения заряда (имеется в виду, скорее, воображаемое, а не реальное перемещение, хотя в случае, если остальные заряды действительно закреплены — или пробный заряд исчезающе мал по величине, чтобы не вносить заметного возмущения в положения других, и переносится достаточно быстро, чтобы остальные заряды не успели заметно переместиться за это время, — формула оказывается верной и для вполне реальной работы при реальном перемещении).
Для снятия неоднозначности выбора константы в потенциале используются какие-нибудь «естественные» условия. Например, часто потенциал определяют таким образом, чтобы он был равен нулю на бесконечности для любого точечного заряда — и тогда это же условие на бесконечности выполнится для любой конечной системы зарядов, а над произвольностью выбора константы можно не задумываться.
Единицы измерения
Измерению подлежит не потенциал, а разность потенциалов. В
Разность потенциалов между двумя точками поля равна одному
В
Приближённое соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ.
Использование термина
Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики
Широко используемые термины
Ещё одним термином, часто используемым как заменитель электростатического потенциала, является кулоновский потенциал, хотя эти термины несколько различаются по оттенку и преимущественной области применения. А именно, слово кулоновский используется для акцентуации типа зависимости потенциала () от расстояния от точечного источника; иногда это же слово используется даже для гравитационного потенциала в теории тяготения Ньютона (хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше).
Вычисление
Закон Кулона
При заданном распределении зарядов в пространстве электростатический потенциал может быть рассчитан с использованием закона Кулона.
Формула электростатического (кулоновского) потенциала одного точечного заряда, размещённого в точке в вакууме:
- ,
где через обозначен коэффициент, зависящий от системы единиц измерения — например, в
- = 9·109 В·м/Кл,
— величина заряда, создающего электростатическое поле.
Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть, например, над поверхностью шара, а не внутри его. Кулоновский потенциал в приведённом выше виде используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов): , где — расстояние между зарядами и .
Для распределения зарядов формула может быть обобщена с заменой на элемент заряда с последующим интегрированием по всем таким элементам. Электростатический потенциал в точке , создаваемый распределённым зарядом, запишется как:
- ,
где заряд обычно записывается как (и интегрирование тогда выполняется по объёму), но в ряде задач может задаваться как (если заряд поверхностный, [] = Кл/м2, интегрирование по площади) или как (заряд линейный [] = Кл/м, интеграл по линии). Интегрирование во всех случаях выполняется по величинам, обозначенным со штрихом.
Уравнение Пуассона
Одним из основных методов расчёта электростатического потенциала является решение уравнения Пуассона (в области без зарядов — уравнения Лапласа). Такое уравнение получается с использованием соотношения , которое подставляется в выражение
- ,
где — объёмная плотность заряда (в кулонах на кубический метр), а — электрическая постоянная (в фарадах на метр). Квадрат дифференциального оператора набла () переобозначается символом и носит название оператора Лапласа.
Если среда отлична от вакуума, то вид выражения теоремы Гаусса меняется на , где обозначает диэлектрическую проницаемость, вообще говоря, координатно-зависимую. При этом уравнение Пуассона обретает вид
- .
При однородном во всём пространстве это выражение превращается в «вакуумное» с заменой там на .
В электродинамике
За пределами электростатики, в электродинамике, в общем случае поля меняются со временем . Согласно уравнениям Максвелла, переменное во времени магнитное поле порождает переменное электрическое и наоборот.
Когда наличествуют изменяющиеся во времени магнитные поля, электрическое поле не может быть описано в терминах электростатического потенциала , поскольку оно в таких условиях не является консервативным: интеграл зависит от пути (ввиду , см. закон индукции Фарадея).
В таком случае вводятся два потенциала — скалярный и векторный. Последний обозначается буквой и связан с магнитным полем как
- .
Согласно одному из уравнений Максвелла, представляющему закон Фарадея, выполняется
- ,
откуда следует, что комбинация является консервативным полем (ротор этой величины равен нулю). Эта величина может быть объявлена «минус градиентом» некоего скалярного потенциала «». Следовательно, оказывается
- ,
где — скалярный потенциал, определённый консервативным полем, включающим вместе с ещё и дополнительный член — производную .
Электростатический потенциал — частный случай этого определения, где не зависит от времени. С другой стороны, для изменяющихся во времени полей
- ,
в отличие от электростатики.
Очень часто для используется «электростатический» символ , однако вне электростатического контекста смысл величины становится иным. Она может называться
См. также
- Гальвани-потенциал
- Вольта-потенциал
- Векторный потенциал электромагнитного поля
- 4-потенциал
- Стандартный электродный потенциал
- Степень окисления
- Гравитационный потенциал
- Ядерный потенциал
Примечания
- ↑ Это соотношение очевидным образом получается из выражения для работы , где — сила, действующая на заряд со стороны электрического поля напряжённостью . Это выражение для работы, в сущности, и есть физический смысл формулы в основном тексте.
- ↑
В компонентах (в прямоугольных декартовых координатах) это равенство расписывается как
Литература
- Алешкевич В. А. Электромагнетизм. — М.: Физматлит, 2014. — 404 с. — 700 экз. — ISBN 978-5-9221-1555-1.