10-cube
Appearance
![]() | This article includes a improve this article by introducing more precise citations. (September 2022) ) |
10-cube Dekeract | |
---|---|
Orthogonal projection inside Petrie polygon Orange vertices are doubled, and central yellow one has four | |
Type | Regular 10-polytope e
|
Family | hypercube |
Schläfli symbol | {4,38} |
Coxeter-Dynkin diagram |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9-faces | 20 {4,37}![]() |
8-faces | 180 {4,36}![]() |
7-faces | 960 {4,35}![]() |
6-faces | 3360 {4,34}![]() |
5-faces | 8064 {4,33}![]() |
4-faces | 13440 {4,3,3}![]() |
Cells | 15360 {4,3} ![]() |
Faces | 11520 |
Edges | 5120 segments ![]() |
Vertices | 1024 points ![]() |
Vertex figure | 9-simplex ![]() |
Petrie polygon | icosagon |
Coxeter group | C10, [38,4] |
Dual | 10-orthoplex ![]() |
Properties | convex, Hanner polytope |
In
9-faces
.
It can be named by its
10 dimensional polytope, constructed from 20 regular facets
.
It is a part of an infinite family of
dual of a dekeract can be called a 10-orthoplex or decacross, and is a part of the infinite family of cross-polytopes
.
Cartesian coordinates
Cartesian coordinates
for the vertices of a dekeract centered at the origin and edge length 2 are
- (±1,±1,±1,±1,±1,±1,±1,±1,±1,±1)
while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) with −1 < xi < 1.
Other images
orthogonal projection. This orientation shows columns of vertices positioned a vertex-edge-vertex distance from one vertex on the left to one vertex on the right, and edges attaching adjacent columns of vertices. The number of vertices in each column represents rows in Pascal's triangle , being 1:10:45:120:210:252:210:120:45:10:1.
|
B10 | B9 | B8 |
---|---|---|
![]() |
![]() |
![]() |
[20] | [18] | [16] |
B7 | B6 | B5 |
![]() |
![]() |
![]() |
[14] | [12] | [10] |
B4 | B3 | B2 |
![]() |
![]() |
![]() |
[8] | [6] | [4] |
A9 | A5 | |
![]() |
![]() | |
[10] | [6] | |
A7 | A3 | |
![]() |
![]() | |
[8] | [4] |
Derived polytopes
Applying an
demienneractic
and 512 enneazettonic facets.
References
- H.S.M. Coxeter:
- Coxeter, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Coxeter,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- Klitzing, Richard. "10D uniform polytopes (polyxenna) o3o3o3o3o3o3o3o3o4x - deker".
External links
- Weisstein, Eric W. "Hypercube". MathWorld.
- Olshevsky, George. "Measure polytope". Glossary for Hyperspace. Archived from the original on 4 February 2007.
- Multi-dimensional Glossary: hypercube Garrett Jones
- OEIS sequence A135289 (Hypercubes:10-cube)
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn
| |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron
|
Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: List of regular polytopes and compounds
|