6-demicube
Demihexeract (6-demicube) | ||
---|---|---|
![]() Petrie polygon projection | ||
Type | Uniform 6-polytope | |
Family | demihypercube | |
Schläfli symbol | {3,33,1} = h{4,34} s{21,1,1,1,1} | |
Coxeter diagrams
|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
| |
Coxeter symbol
|
131 | |
5-faces | 44 | 12 |
4-faces | 252 | 60 {31,1,1}![]() 192 {33} ![]() |
Cells | 640 | 160 {31,0,1}![]() 480 {3,3} ![]() |
Faces | 640 | {3}![]() |
Edges | 240 | |
Vertices | 32 | |
Vertex figure | ||
Symmetry group | D6, [33,1,1] = [1+,4,34] [25]+ | |
Petrie polygon | decagon | |
Properties | convex |
In
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM6 for a 6-dimensional half measure polytope.









Cartesian coordinates
- (±1,±1,±1,±1,±1,±1)
with an odd number of plus signs.
As a configuration
This configuration matrix represents the 6-demicube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[2][3]
The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.[1]
D6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | k-figure | notes | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A4 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
( ) | f0 | 32 | 15 | 60 | 20 | 60 | 15 | 30 | 6 | 6 | r{3,3,3,3} |
D6/A4 = 32*6!/5! = 32 |
A3A1A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
{ } | f1 | 2 | 240 | 8 | 4 | 12 | 6 | 8 | 4 | 2 | {}x{3,3} | D6/A3A1A1 = 32*6!/4!/2/2 = 240 |
A3A2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
{3} | f2 | 3 | 3 | 640 | 1 | 3 | 3 | 3 | 3 | 1 | {3}v( ) |
D6/A3A2 = 32*6!/4!/3! = 640 |
A3A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
h{4,3} | f3 | 4 | 6 | 4 | 160 | * | 3 | 0 | 3 | 0 | {3} | D6/A3A1 = 32*6!/4!/2 = 160 |
A3A2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
{3,3} | 4 | 6 | 4 | * | 480 | 1 | 2 | 2 | 1 | {}v( ) | D6/A3A2 = 32*6!/4!/3! = 480 | |
D4A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
h{4,3,3} | f4 | 8 | 24 | 32 | 8 | 8 | 60 | * | 2 | 0 | { } | D6/D4A1 = 32*6!/8/4!/2 = 60 |
A4 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
{3,3,3} | 5 | 10 | 10 | 0 | 5 | * | 192 | 1 | 1 | D6/A4 = 32*6!/5! = 192 | ||
D5 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
h{4,3,3,3} | f5 | 16 | 80 | 160 | 40 | 80 | 10 | 16 | 12 | * | ( ) | D6/D5 = 32*6!/16/5! = 12 |
A5 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
{3,3,3,3} | 6 | 15 | 20 | 0 | 15 | 0 | 6 | * | 32 | D6/A5 = 32*6!/6! = 32 |
Images
Coxeter plane
|
B6 | |
---|---|---|
Graph | ![]() | |
Dihedral symmetry
|
[12/2] | |
Coxeter plane | D6 | D5 |
Graph | ![]() |
![]() |
Dihedral symmetry | [10] | [8] |
Coxeter plane | D4 | D3 |
Graph | ![]() |
![]() |
Dihedral symmetry | [6] | [4] |
Coxeter plane | A5 | A3 |
Graph | ![]() |
![]() |
Dihedral symmetry | [6] | [4] |
Related polytopes
There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:
D6 polytopes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
![]() h{4,34} |
![]() h2{4,34} |
h3{4,34}
|
h4{4,34}
|
h5{4,34}
|
h2,3{4,34}
|
h2,4{4,34}
|
h2,5{4,34}
| ||||
h3,4{4,34}
|
h3,5{4,34}
|
h4,5{4,34}
|
h2,3,4{4,34}
|
h2,3,5{4,34}
|
h2,4,5{4,34}
|
h3,4,5{4,34}
|
h2,3,4,5{4,34}
|
The 6-demicube, 131 is third in a dimensional series of uniform polytopes, expressed by
n | 4 | 5 | 6 | 7 | 8 | 9
|
---|---|---|---|---|---|---|
Coxeter group |
A3A1 | A5 | D6 | E7 | = E7+ | =E7++ |
Coxeter diagram |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry | [3−1,3,1] | [30,3,1] | [31,3,1] | [32,3,1] | [33,3,1] | [34,3,1] |
Order
|
48 | 720 | 23,040 | 2,903,040 | ∞ | |
Graph | ![]() |
![]() |
![]() |
![]() |
- | - |
Name | −131 | 031
|
131 | 231 | 331 | 431 |
It is also the second in a dimensional series of uniform polytopes and honeycombs, expressed by
Space | Finite | Euclidean | Hyperbolic | |||
---|---|---|---|---|---|---|
n | 4 | 5 | 6 | 7 | 8 | 9
|
Coxeter group |
A3A1 | A5 | D6 | E7 | =E7+ | =E7++ |
Coxeter diagram |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry | [3−1,3,1] | [30,3,1] | [31,3,1] | [32,3,1] | [[33,3,1]] | [34,3,1] |
Order
|
48 | 720 | 23,040 | 2,903,040 | ∞ | |
Graph | ![]() |
![]() |
![]() |
- | - | |
Name | 13,-1 | 130 | 131 | 132 | 133 | 134 |
Skew icosahedron
Coxeter identified a subset of 12 vertices that form a regular skew icosahedron {3, 5} with the same symmetries as the icosahedron itself, but at different angles. He dubbed this the regular skew icosahedron.[4][5]
References
- ^ a b Klitzing, Richard. "x3o3o *b3o3o3o - hax".
- ^ Coxeter, Regular Polytopes, sec 1.8 Configurations
- ^ Coxeter, Complex Regular Polytopes, p.117
- ISBN 9780486409191.
- ISBN 978-4-931469-77-8. Retrieved 4 April 2020.
- H.S.M. Coxeter:
- Coxeter, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, wiley.com, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Coxeter,
- ISBN 978-1-56881-220-5(Chapter 26. pp. 409: Hemicubes: 1n1)
- Klitzing, Richard. "6D uniform polytopes (polypeta) with acronyms x3o3o *b3o3o3o – hax".
External links
- Olshevsky, George. "Demihexeract". Glossary for Hyperspace. Archived from the original on 4 February 2007.
- Multi-dimensional Glossary
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn
| |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron
|
Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: List of regular polytopes and compounds
|