AC0

Source: Wikipedia, the free encyclopedia.
Diagram of an AC0 circuit: The n input bits are on the bottom and the top gate produces the output; the circuit consists of AND- and OR-gates of polynomial fan-in each, and the alternation depth is bounded by a constant.

AC0 is a

NOT gates only at the inputs).[1] It thus contains NC0, which has only bounded-fanin AND and OR gates.[1]

Example problems

Integer addition and subtraction are computable in AC0,[2] but multiplication is not (specifically, when the inputs are two integers under the usual binary[3] or base-10 representations of integers).

Since it is a circuit class, like P/poly, AC0 also contains every unary language.

Descriptive complexity

From a

FO+BIT of all languages describable in first-order logic with the addition of the BIT predicate, or alternatively by FO(+, ×), or by Turing machine in the logarithmic hierarchy.[4]

Separations

In 1984 Furst, Saxe, and Sipser showed that calculating the parity of the input bits (unlike the aforementioned addition/subtraction problems above which had two inputs) cannot be decided by any AC0 circuits, even with non-uniformity.[5][1] It follows that AC0 is not equal to NC1, because a family of circuits in the latter class can compute parity.[1] More precise bounds follow from switching lemma. Using them, it has been shown that there is an oracle separation between the polynomial hierarchy and PSPACE.

References

  1. ^ .
  2. ^ Barrington, David Mix; Maciel, Alexis (July 18, 2000). "Lecture 2: The Complexity of Some Problems" (PDF). IAS/PCMI Summer Session 2000, Clay Mathematics Undergraduate Program: Basic Course on Computational Complexity.
  3. ^ Kayal, Neeraj; Hegde, Sumant (2015). "Lecture 5: Feb 4, 2015" (PDF). E0 309: Topics in Complexity Theory. Archived (PDF) from the original on 2021-10-16. Retrieved 2021-10-16.
  4. ^ Immerman, N. (1999). Descriptive Complexity. Springer. p. 85.
  5. .
This page is based on the copyrighted Wikipedia article: AC0. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy