AP-7 (drug)

Source: Wikipedia, the free encyclopedia.
AP-7
Names
Preferred IUPAC name
2-Amino-7-phosphonoheptanoic acid
Identifiers
3D model (
JSmol
)
ChEMBL
ChemSpider
UNII
  • InChI=1S/C7H16NO5P/c8-6(7(9)10)4-2-1-3-5-14(11,12)13/h6H,1-5,8H2,(H,9,10)(H2,11,12,13) checkY
    Key: MYDMWESTDPJANS-UHFFFAOYSA-N checkY
  • InChI=1/C7H16NO5P/c8-6(7(9)10)4-2-1-3-5-14(11,12)13/h6H,1-5,8H2,(H,9,10)(H2,11,12,13)
  • O=P(O)(O)CCCCCC(N)C(=O)O
  • O=P(O)(O)CCCCCC(C(=O)O)N
Properties
C7H16NO5P
Molar mass 225.179 g/mol
Density 1.39 g/mL
Boiling point 480.1 °C (896.2 °F; 753.2 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

AP-7 is a selective NMDA receptor (NMDAR) antagonist that competitively inhibits the glutamate binding site and thus activation of NMDAR. It has anticonvulsant effects.[1]

AP-7 functions specifically as a NMDA recognition site blocker, in contrast with 7-chlorokynurenate, which acts as a glycine site modulation blocker.[2]

Animal studies

AP-7 injected directly into the dorsal periaqueductal grey (DPAG) of rats produced an anxiolytic effect, whereas direct injection outside of the DPAG did not elicit anxiolytic effects. This suggests that a portion of systemically taken NMDA antagonist's anxiolytic effects comes from the DPAG region of the brain, at least in rats.[3]

The DPAG of the brain is thought to deal with fear-like defensive behavior via NMDA and glycine B receptors.[4] These excitatory glutamate receptors work with the inhibitory GABA receptors to achieve equilibrium in the DPAG of the brain.[5]

AP-7 has been known to cause muscle rigidity and catalepsy in rats following bilateral microinjections (0.02-0.5 nmol) into the globus pallidus and ventral-posterior portions of the caudate-putamen.[6]

The optically pure D-(−)-2-amino-7-phosphonoheptanoic acid [D-AP7], has also been examined. In groups of hypoxia-treated rats, D-AP7 enhanced motility, exhibited anxiogenic-like effect and impaired consolidation in passive avoidance. Both AP-7 and D-AP7 function as potent, specific antagonists of the NMDA receptor.[7]

See also

  • APV (drug)

References