Absolute value


In mathematics, the absolute value or modulus of a real number , denoted , is the
Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts.
Terminology and notation
In 1806, Jean-Robert Argand introduced the term module, meaning unit of measure in French, specifically for the complex absolute value,[1][2] and it was borrowed into English in 1866 as the Latin equivalent modulus.[1] The term absolute value has been used in this sense from at least 1806 in French[3] and 1857 in English.[4] The notation |x|, with a vertical bar on each side, was introduced by Karl Weierstrass in 1841.[5] Other names for absolute value include numerical value[1] and magnitude.[1] The absolute value of has also been denoted in some mathematical publications,[6] and in spreadsheets, programming languages, and computational software packages, the absolute value of is generally represented by abs(x)
, or a similar expression,[7] as it has been since the earliest days of high-level programming languages.[8]
The vertical bar notation also appears in a number of other mathematical contexts: for example, when applied to a set, it denotes its
Definition and properties
Real numbers
For any real number , the absolute value or modulus of is denoted by , with a vertical bar on each side of the quantity, and is defined as[12]
The absolute value of is thus always either a
. When itself is negative (), then its absolute value is necessarily positive ().From an
Since the square root symbol represents the unique positive square root, when applied to a positive number, it follows that This is equivalent to the definition above, and may be used as an alternative definition of the absolute value of real numbers.[14]
The absolute value has the following four fundamental properties (, are real numbers), that are used for generalization of this notion to other domains:
Non-negativity | |
Positive-definiteness | |
Multiplicativity
| |
Subadditivity, specifically the triangle inequality |
Non-negativity, positive definiteness, and multiplicativity are readily apparent from the definition. To see that subadditivity holds, first note that where , with its sign chosen to make the result positive. Now, since and , it follows that, whichever of is the value of , one has for all real . Consequently, , as desired.
Some additional useful properties are given below. These are either immediate consequences of the definition or implied by the four fundamental properties above.
Idempotence (the absolute value of the absolute value is the absolute value) | |
Evenness (reflection symmetry of the graph)
| |
Identity of indiscernibles (equivalent to positive-definiteness) | |
Triangle inequality (equivalent to subadditivity) | |
(if ) | Preservation of division (equivalent to multiplicativity) |
Reverse triangle inequality (equivalent to subadditivity)
|
Two other useful properties concerning inequalities are:
or |
These relations may be used to solve inequalities involving absolute values. For example:
The absolute value, as "distance from zero", is used to define the absolute difference between arbitrary real numbers, the standard
Complex numbers

Since the
When a complex number is expressed in its polar form as its absolute value is
Since the product of any complex number and its complex conjugate , with the same absolute value, is always the non-negative real number , the absolute value of a complex number is the square root of which is therefore called the
The complex absolute value shares the four fundamental properties given above for the real absolute value. The identity is a special case of multiplicativity that is often useful by itself.
Absolute value function

The real absolute value function is
For both real and complex numbers the absolute value function is
Relationship to the sign function
The absolute value function of a real number returns its value irrespective of its sign, whereas the sign (or signum) function returns a number's sign irrespective of its value. The following equations show the relationship between these two functions:
or
and for x ≠ 0,
Relationship to the max and min functions
Let , then the following relationship to the
and
The formulas can be derived by considering each case and separately.
From the last formula one can derive also .
Derivative
The real absolute value function has a
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist.
The subdifferential of |x| at x = 0 is the interval [−1, 1].[18]
The
The second derivative of |x| with respect to x is zero everywhere except zero, where it does not exist. As a
Antiderivative
The antiderivative (indefinite integral) of the real absolute value function is
where C is an arbitrary
Derivatives of compositions
The following two formulae are special cases of the chain rule:
if the absolute value is inside a function, and
if another function is inside the absolute value. In the first case, the derivative is always discontinuous at in the first case and where in the second case.
Distance
The absolute value is closely related to the idea of distance. As noted above, the absolute value of a real or complex number is the distance from that number to the origin, along the real number line, for real numbers, or in the complex plane, for complex numbers, and more generally, the absolute value of the difference of two real or complex numbers is the distance between them.
The standard Euclidean distance between two points
and
in Euclidean n-space is defined as:
This can be seen as a generalisation, since for and real, i.e. in a 1-space, according to the alternative definition of the absolute value,
and for and complex numbers, i.e. in a 2-space,
The above shows that the "absolute value"-distance, for real and complex numbers, agrees with the standard Euclidean distance, which they inherit as a result of considering them as one and two-dimensional Euclidean spaces, respectively.
The properties of the absolute value of the difference of two real or complex numbers: non-negativity, identity of indiscernibles, symmetry and the triangle inequality given above, can be seen to motivate the more general notion of a
A real valued function d on a set X × X is called a
Non-negativity Identity of indiscernibles Symmetry Triangle inequality
Generalizations
Ordered rings
The definition of absolute value given for real numbers above can be extended to any ordered ring. That is, if a is an element of an ordered ring R, then the absolute value of a, denoted by |a|, is defined to be:[20]
where −a is the additive inverse of a, 0 is the additive identity, and < and ≥ have the usual meaning with respect to the ordering in the ring.
Fields
The four fundamental properties of the absolute value for real numbers can be used to generalise the notion of absolute value to an arbitrary field, as follows.
A real-valued function v on a field F is called an absolute value (also a modulus, magnitude, value, or valuation)[21] if it satisfies the following four axioms:
Non-negativity Positive-definiteness Multiplicativity Subadditivity or the triangle inequality
Where 0 denotes the
If v is an absolute value on F, then the function d on F × F, defined by d(a, b) = v(a − b), is a metric and the following are equivalent:
- d satisfies the ultrametricinequality for all x, y, z in F.
- is bounded in R.
- for every .
- for all .
- for all .
An absolute value which satisfies any (hence all) of the above conditions is said to be non-Archimedean, otherwise it is said to be
Vector spaces
Again the fundamental properties of the absolute value for real numbers can be used, with a slight modification, to generalise the notion to an arbitrary vector space.
A real-valued function on a vector space V over a field F, represented as ‖ · ‖, is called an absolute value, but more usually a norm, if it satisfies the following axioms:
For all a in F, and v, u in V,
Non-negativity Positive-definiteness Absolute homogeneity or positive scalability Subadditivity or the triangle inequality
The norm of a vector is also called its length or magnitude.
In the case of Euclidean space , the function defined by
is a norm called the Euclidean norm. When the real numbers are considered as the one-dimensional vector space , the absolute value is a
The complex absolute value is a special case of the norm in an inner product space, which is identical to the Euclidean norm when the complex plane is identified as the Euclidean plane .
Composition algebras
Every composition algebra A has an involution x → x* called its conjugation. The product in A of an element x and its conjugate x* is written N(x) = x x* and called the norm of x.
The real numbers , complex numbers , and quaternions are all composition algebras with norms given by definite quadratic forms. The absolute value in these division algebras is given by the square root of the composition algebra norm.
In general the norm of a composition algebra may be a quadratic form that is not definite and has null vectors. However, as in the case of division algebras, when an element x has a non-zero norm, then x has a multiplicative inverse given by x*/N(x).
See also
- Least absolute values
Notes
- ^ a b c d Oxford English Dictionary, Draft Revision, June 2008
- Littré, 1877
- Lazare Nicolas M. Carnot, Mémoire sur la relation qui existe entre les distances respectives de cinq point quelconques pris dans l'espace, p. 105 at Google Books
- ^ James Mill Peirce, A Text-book of Analytic Geometry at Internet Archive. The oldest citation in the 2nd edition of the Oxford English Dictionary is from 1907. The term absolute value is also used in contrast to relative value.
- ISBN 0-89871-420-6, p. 25
- MR 0008095.
- ISBN 9781119076780.
- ^ Sargent, Murray III (22 January 2025). A Nearly Plain-Text Encoding of Mathematics (PDF) (Unicode report 28). Retrieved 23 February 2025.
- ISBN 0805390219.
- ISBN 0201510359.
- ^ Mendelson, p. 2.
- ISBN 978-0-7637-5177-7.
- ISBN 0-534-37718-1.
- ISBN 9780824784157.
- ^ a b "Weisstein, Eric W. Absolute Value. From MathWorld – A Wolfram Web Resource".
- ^ Bartle and Sherbert, p. 163
- ISBN 3-211-83154-1, p. 31–32
- ^ These axioms are not minimal; for instance, non-negativity can be derived from the other three: 0 = d(a, a) ≤ d(a, b) + d(b, a) = 2d(a, b).
- ^ Mac Lane, p. 264.
- ^ Shechter, p. 260. This meaning of valuation is rare. Usually, a valuation is the logarithm of the inverse of an absolute value
- ^ Shechter, pp. 260–261.
References
- Bartle; Sherbert; Introduction to real analysis (4th ed.), John Wiley & Sons, 2011 ISBN 978-0-471-43331-6.
- Nahin, Paul J.; An Imaginary Tale; Princeton University Press; (hardcover, 1998). ISBN 0-691-02795-1.
- Mac Lane, Saunders, Garrett Birkhoff, Algebra, American Mathematical Soc., 1999. ISBN 978-0-8218-1646-2.
- Mendelson, Elliott, Schaum's Outline of Beginning Calculus, McGraw-Hill Professional, 2008. ISBN 978-0-07-148754-2.
- O'Connor, J.J. and Robertson, E.F.; "Jean Robert Argand".
- Schechter, Eric; Handbook of Analysis and Its Foundations, pp. 259–263, "Absolute Values", Academic Press (1997) ISBN 0-12-622760-8.