Bounded set

Source: Wikipedia, the free encyclopedia.
An artist's impression
of a bounded set (top) and of an unbounded set (bottom). The set at the bottom continues forever towards the right.

In

metric
.

half plane
is unbounded yet has a boundary.

A bounded set is not necessarily a closed set and vice versa. For example, a subset S of a 2-dimensional real space R2 constrained by two parabolic curves x2 + 1 and x2 - 1 defined in a Cartesian coordinate system is closed by the curves but not bounded (so unbounded).

Definition in the real numbers

supremum
.

A set S of real numbers is called bounded from above if there exists some real number k (not necessarily in S) such that k s for all s in S. The number k is called an upper bound of S. The terms bounded from below and lower bound are similarly defined.

A set S is bounded if it has both upper and lower bounds. Therefore, a set of real numbers is bounded if it is contained in a finite interval.

Definition in a metric space

A subset S of a metric space (M, d) is bounded if there exists r > 0 such that for all s and t in S, we have d(s, t) < r. The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself.

  • Total boundedness
    implies boundedness. For subsets of Rn the two are equivalent.
  • A metric space is compact if and only if it is complete and totally bounded.
  • A subset of
    Heine-Borel theorem
    .

Boundedness in topological vector spaces

In

normed vector spaces
, then the two definitions coincide.

Boundedness in order theory

A set of real numbers is bounded if and only if it has an upper and lower bound. This definition is extendable to subsets of any partially ordered set. Note that this more general concept of boundedness does not correspond to a notion of "size".

A subset S of a partially ordered set P is called bounded above if there is an element k in P such that ks for all s in S. The element k is called an upper bound of S. The concepts of bounded below and lower bound are defined similarly. (See also upper and lower bounds.)

A subset S of a partially ordered set P is called bounded if it has both an upper and a lower bound, or equivalently, if it is contained in an interval. Note that this is not just a property of the set S but also one of the set S as subset of P.

A bounded poset P (that is, by itself, not as subset) is one that has a least element and a

greatest element. Note that this concept of boundedness has nothing to do with finite size, and that a subset S of a bounded poset P with as order the restriction
of the order on P is not necessarily a bounded poset.

A subset S of Rn is bounded with respect to the

lexicographical order
, but not with respect to the Euclidean distance.

A class of ordinal numbers is said to be unbounded, or cofinal, when given any ordinal, there is always some element of the class greater than it. Thus in this case "unbounded" does not mean unbounded by itself but unbounded as a subclass of the class of all ordinal numbers.

See also

References

  • .
  • .