Azzedine Bousseksou

Source: Wikipedia, the free encyclopedia.

Azzedine Bousseksou (born 2 December 1964) is a Franco Algerian physical chemist.

Career

Azzedine Bousseksou attended high school in

Johannes Gutenberg University of Mainz .[1]

Bousseksou began his career at the CNRS Coordination Chemistry Laboratory in Toulouse as a research fellow in 1993.[1][2] In January 2003, while in charge of Research at the LCC-CNRS Toulouse, he created and directed the scientific team "Switchable Molecular Materials".[3] From 2005 and 2009, he also directed the GDR Magnétisme et Commutation Moléculaires[4] and co-coordinated the GDRI France-Japan on multifunctional molecular materials between 2006-2010. Between 2011 and 2013, he was Deputy Director of the LCC-CNRS Toulouse and has been Director since 2013. Azzedine Bousseksou was a member of the CNRS national committee for the evaluation of researchers and research laboratories from 2000 to 2004 and 2010 to 2015 and has coordinated and/or led several European, national, and regional projects. He has been a member of the European Network of Excellence on Molecular Magnetism, REX MAGMANET,[5] and is a member of the European Institute on Molecular Magnetism (EIMM).

He and his team developed three complementary conceptual approaches, which include:

  •    The transition from spin & Nano-Electronic Transport (molecular spintronics) with the setting up of the very first molecular devices allowing the coupling of a spin state with electronic transport in a nanometric junction,
  •    The transition from spin & optics towards high-performance photonic devices with the implementation of Nano-Thermometric Sensors (patented) that surpass current commercial devices,
  •    Spin transition & reversible variation of molecular volume with the realization of the first Nano-Actuators with controlled direction whose chemical combination with polymers allowed the implementation of active materials "artificial muscles" with advanced applications in robotics and Micro-Nano-Mechanics.

With his research team made up of 3 other permanent staff members (Gabor Molnar, DR-CNRS, Lionel Salmon DR-CNRS and William Nicolazzi, MCF-Université Paul Sabatier), among his most remarkable achievements are the following:

  •    The development of the lsing-type model with two electronic levels for one- and two-step spin transition with prediction of symmetry breaks.[6]
  •    The discovery of the first magneto-switching by the application of an intense magnetic field (32 Tesla) pulsed into the hysteresis cycle of a spin transition molecule (Fe(Phen)2(NCS)2) allowing the information to be addressed from the high spin (HS) state to the low spin (BS) state, by a nucleation growth phenomenon whose dynamic effects are the subject of particular attention at the experimental and theoretical levels.[7][8]
  •    The discovery of the first hysteresis of the dielectric constant in spin-transition complexes.[9][10][11]
  •    The discovery of the first double photo-switching in binuclear spin-transition compounds[12]
  •    The first photo-switching at room temperature.[13]
  •    The first synthesis of spin-transition thin films at room temperature (new layer-by-layer concept for spin transition).[11][14]
  •    The first Nano-Structuring of Bistable materials with spin transition at room temperature.[15]
  •    The synthesis of the smallest spin-transition coordination nanoparticles (4 nm) with hysteresis around room temperature.[16]
  •    The original synthesis of a hybrid system combining spin transition and fluorescence for the purpose of detecting the spin transition property on the single Nano-Object.[17]
  •    The development of a new generation of active devices based on photonic/plasmonic spin-transition materials,[18] diffractive gas sensors,[19] Nano-Thermometers[17] and also Nano-Electronics,[20] and spintronic devices.[21]
  •    The recent development of switchable molecular materials for direction-controlled micro- and Nano-Actuation by exploiting the reversible volume variation of spin-transition molecules (development of the first artificial muscle prototypes) with thermo- or photo-induced actuation for robotic applications (ERC 2019 project under evaluation).[22][23][24][25][26]

He has supervised about twenty post-doctoral students and more than thirty theses.

He has registered 12 patents, 2 of which are being exploited, and one startup in incubation.

He is a founding member of the Algerian Academy of Sciences and Technologies (2015), as well as a member of the French Academy of Sciences (2013),[27] the European Academy of Sciences and Arts (2012) and the European Academy of sciences (2014).

Awards

Prizes

  • Prestigious Süe Prize of the French Society of Chemistry, 2020
  • Korean Magnetic Society Award, 2012
  • Prix la Recherche, Chemistry section, 2011
  • Langevin Prize of the French Academy of Sciences (FR), 2009
  • SCF Co-ordination Chemistry Division Award, 2003

Honors

  • Winner of the national Smart Grids ERDF 2016 competition
  • Medal of the University of Montpellier, 2014
  • CNRS Silver Medal, 2010
  • Visiting Professor, Lecturer
    University of Mexico
    City, Mexico (1 month), 2017
  • Visiting Professor (18 months) at Queen's University of Belfast, UK, 1997

Scholarly Associations - Academies

  • Member of the French Academy of Sciences, 2013
  • Member of the European Academy of Sciences, 2014
  • Member of the European Academy of Sciences and Arts, 2012
  • Founding member of the Algerian Academy of Science and Technology, 2015
  • Member of the National Committee of the National Research Council, Section 14 (200-2004) and (2012-2016)
  • Member of the European Institute on Molecular Magnetism (EIMM)
  • Guest Editor, Coordination Chemistry Reviews, Elsevier, 2016
  • Guest Editor, International Journal of Molecular Sciences, MDPI, 2011
  • Guest Editor, New Journal of Chemistry, RCS, 2008
  • Coordination of the special issue of the Comptes Rendus Rendus of the Académie des Sciences on the phenomenon of spin transition, 2018

References

  1. ^ a b c d "Académie des Sciences" (PDF).
  2. ^ "LCC Toulouse".
  3. ^ "" Matériaux Moléculaires Commutables " du LCC".
  4. ^ "GDR Magnétisme et Commutation Moléculaires".
  5. ^ "Rex Magmanet".
  6. ^ A. Bousseksou, F. Varret, J. Nasser, « Ising-like model for the two-step spin-crossover of binuclear molecules », J. Phys. I (France), 3 (1993), p. 1463-1473
  7. ^ A. Bousseksou, N. Negre, M. Goiran, L. Salmon, J.P. Tuchagues, M.L. Boillot, K. Boukhedaden, F. Varret, « Dynamic  triggering of a spin-transition  by a pulsed magnetic field », Eur. Phys. J. B, 13 (2000), p. 451-456
  8. ^ A. Bousseksou, K. Bokheddaden, M. Goiran, C. Consejo, M.L. Boillot, J.P. Tuchagues, « Dynamic response of the spin-crossover solid Co(H2(fsa)2 en)(Py)2  to a pulsed magnetic field », Phys. Rev. B, 65 (2002), p. 172412
  9. ^ A. Bousseksou, G. Molnár, P. Demont, J. Menegotto, « Observation of a thermal hysteresis loop in the dielectric constant of spin-crossover complexes : Towards molecular memory materials », J. Mater. Chem., 13 (2003), p. 2069-2071
  10. ^ PCT Patent EP1430552 (23/06/2004)
  11. ^ a b S. Cobo, G. Molnár, J.A. Real, A. Bousseksou, « Multilayer Sequential Assembly of Thin Films that Display Room-Temperature Spin Crossover with Hysteresis », Angew. Chem. Int. Ed., 45 (2006), p. 5786-5789
  12. ^ N. Ould Moussa, G. Molnár, S. Bonhommeau, A. Zwick, S. Mouri, K. Tanaka, J. A. Real, A. Bousseksou, « Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases », Phys. Rev. Lett., 94 (2005), p. 107205
  13. ^ S. Bonhommeau, G. Molnár, A. Galet, A. Zwick, J.A. Real, J.J. McGarvey, A. Bousseksou, « One-Shot-Laser-Pulse-Induced Reversible Spin Transition in the Spin Crossover Complex {Fe(C4H4N2)[Pt(CN)4]} at Room Temperature », Angew. Chem. Int. Ed., 44 (2005), p. 4069-4073
  14. ^ S. Cobo, D. Ostrovskii, S. Bonhommeau, L. Vendier, G. Molnár, L. Salmon, K. Tanaka, A. Bousseksou, « Single-Laser-Shot-Induced Complete Bidirectional Spin Transition at Room Temperature », J. Am. Chem. Soc., 130 (2008), p. 9019–9024
  15. ^ G. Molnár, S. Cobo, J.A. Real, F. Carcenac, E. Daran, C. Vieu, A. Bousseksou, « A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin Crossover Coordination Polymers », Adv. Mater., 19 (2007), p. 2163-2167
  16. ^ Larionova, L. Salmon, Y. Guari, A. Tokarev, K. Molvinger, G. Molnár, A. Bousseksou, « Towards the ultimate size limit of the memory effect in spin crossover solids », Angew. Chem. Int. Ed., 47 (2008), p. 8236-8240
  17. ^ a b L. Salmon, G. Molnár, D. Zitouni, C. Quintero, C. Bergaud, J.C. Micheau, A. Bousseksou, « A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles », J. Mater. Chem., 20 (2010), p. 5499 – 5503
  18. ^ K. Abdul-Kader, M. Lopes, C. Bartual-Murgui, O. Kraieva, E.M. Hernández, L. Salmon, W. Nicolazzi, F. Carcenac, C. Thibault, G. Molnár, A. Bousseksou, « Synergistic Switching of Plasmonic Resonances and Molecular Spin States », Nanoscale, 5 (2013), p. 5288 - 5293
  19. ^ C. Bartual-Murgui, A. Akou, L. Salmon, C. Thibault, G. Molnár, C. Vieu, A. Bousseksou, « Spin-Crossover Metal-Organic Frameworks: Promising Materials for Designing Gas Sensors », J. Mater. Chem., 3 c (2015), p. 1277-1285
  20. ^ A. Rotaru, J. Dugay, R.P. Tan, I.A. Gural’skiy, L. Salmon, P. Demont, J. Carrey, G. Molnár, M. Respaud, A. Bousseksou, « Nano-Electro-Manipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices », Adv. Mater., 25 (2013), p. 1745-1749
  21. ^ C. Wang, R. Ciganda, L. Salmon, D. Gregurec, J. Irigoyen, S. Moya, J. Ruiz, D. Astruc, « Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions », Angew. Chem. Int. Ed., 55 (2016), p. 3091
  22. ^ H.J. Shepherd, I. A. Gural’skiy, C.M. Quintero, S. Tricard, L. Salmon, G. Molnár, A. Bousseksou, « Molecular Actuators Driven by Cooperative Spin-State Switching », Nature Commun., 4 (2013), p. 2607
  23. ^ M.D. Manrique-Juárez, S. Rat, L. Salmon, G. Molnár, C.M. Quintero, L. Nicu, H.J. Shepherd, A. Bousseksou, « Switchable molecule-based materials for micro- and nanoscale actuating applications: achievements and prospects », Coord. Chem. Rev., 308 (2016), p. 395-408
  24. ^ M.D. Manrique-Juárez, S. Rat, F. Mathieu, I. Séguy, T. Leichle, L. Nicu, L. Salmon, G. Molnár, A. Bousseksou, « Microelectromechanical systems integrating molecular spin crossover actuators », Appl. Phys. Lett., 109 (2016), p. 061903
  25. ^ G. Molnar, S. Rat, L. Salmon, W. Nicolazzi, A. Bousseksou, « Spin crossover nanomaterials: from fundamental concepts to devices », Adv. Mater., 30 (2018), p. 1703862
  26. ^ M. D. Manrique-Juarez, F. Mathieu, V. Shalabaeva, J. Cacheux, S. Rat, L. Nicu, T. Leïchlé, L. Salmon, G. Molnár, A. Bousseksou, « A Bistable Microelectromechanical System Actuated by Spin Crossover Molecules », Angew. Chem. Int. Ed., 56 (2017), p. 8074-8078
  27. ^ "Académie des sciences".

External links