Bitruncation


In geometry, a bitruncation is an operation on regular polytopes. The original edges are lost completely and the original faces remain as smaller copies of themselves.
Bitruncated regular polytopes can be represented by an extended Schläfli symbol notation t1,2{p,q,...} or 2t{p,q,...}.
In regular polyhedra and tilings
For regular polyhedra (i.e. regular 3-polytopes), a bitruncated form is the truncated dual. For example, a bitruncated cube is a truncated octahedron.
In regular 4-polytopes and honeycombs
For a regular 4-polytope, a bitruncated form is a dual-symmetric operator. A bitruncated 4-polytope is the same as the bitruncated dual, and will have double the symmetry if the original 4-polytope is self-dual.
A regular polytope (or honeycomb) {p, q, r} will have its {p, q} cells bitruncated into truncated {q, p} cells, and the vertices are replaced by truncated {q, r} cells.
Self-dual {p,q,p} 4-polytope/honeycombs
An interesting result of this operation is that self-dual 4-polytope {p,q,p} (and honeycombs) remain
Space | 4-polytope or honeycomb | Coxeter-Dynkin diagram
|
Cell type | Cell image |
Vertex figure |
---|---|---|---|---|---|
Bitruncated 5-cell (10-cell) )
(Uniform 4-polytope |
t1,2{3,3,3}![]() ![]() ![]() ![]() ![]() ![]() ![]() |
truncated tetrahedron | ![]() |
![]() | |
Bitruncated 24-cell (48-cell) )
(Uniform 4-polytope |
t1,2{3,4,3}![]() ![]() ![]() ![]() ![]() ![]() ![]() |
truncated cube | ![]() |
![]() | |
Uniform Euclidean convex honeycomb )
|
t1,2{4,3,4}![]() ![]() ![]() ![]() ![]() ![]() ![]() |
truncated octahedron | ![]() |
![]() | |
Bitruncated icosahedral honeycomb (Uniform hyperbolic convex honeycomb) |
t1,2{3,5,3}![]() ![]() ![]() ![]() ![]() ![]() ![]() |
truncated dodecahedron | ![]() |
![]() | |
Bitruncated order-5 dodecahedral honeycomb (Uniform hyperbolic convex honeycomb) |
t1,2{5,3,5}![]() ![]() ![]() ![]() ![]() ![]() ![]() |
truncated icosahedron | ![]() |
![]() |
See also
References
- ISBN 0-486-61480-8(pp. 145–154 Chapter 8: Truncation)
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- ISBN 978-1-56881-220-5(Chapter 26)
External links
Seed | Truncation | Rectification | Bitruncation | Dual | Expansion | Omnitruncation | Alternations | ||
---|---|---|---|---|---|---|---|---|---|
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
t0{p,q} {p,q} |
t01{p,q} t{p,q} |
t1{p,q} r{p,q} |
t12{p,q} 2t{p,q} |
t2{p,q} 2r{p,q} |
t02{p,q} rr{p,q} |
t012{p,q} tr{p,q} |
ht0{p,q} h{q,p} |
ht12{p,q} s{q,p} |
ht012{p,q} sr{p,q} |