Bobbitt reaction

Source: Wikipedia, the free encyclopedia.
Bobbitt reaction
Named after James M. Bobbitt
Reaction type Ring forming reaction

The Bobbitt reaction is a name reaction in organic chemistry. It is named after the American chemist James M. Bobbitt.[1] The reaction allows the synthesis of 1-, 4-, and N-substituted 1,2,3,4-tetrahydroisoquinolines and also 1-, and 4-substituted isoquinolines.

General Reaction Scheme

The reaction scheme below shows the synthesis of 1,2,3,4-tetrahydroisoquinoline from benzaldehyde and 2,2-diethylethylamine.[1]

Bobbitt reaction (general reaction scheme)
Bobbitt reaction (general reaction scheme)

Reaction Mechanism

A possible mechanism is depicted below:[1]

proposed mechanism Bobbitt reaction
proposed mechanism Bobbitt reaction

First the benzaliminoacetal 3 is built by the condensation of benzaldehyde 1 and 2,2-diethylethylamine 2. After the condensation the C=N-double bond in 3 is hydrogenated to form 4. Subsequently, an ethanol is removed. Next, the compound 5 is built including the cyclization step. After that the C=C-double bond in 5 is hydrogenated . Thus, 1,2,3,4-tetrahydroisoquinoline 6 is formed.

Applications

The Bobbitt reaction has found application in the preparation of some alkaloids[1] such as carnegine,[2] lophocerine, salsolidine,[2] and salsoline.[2]

See also

References