Compact space

Source: Wikipedia, the free encyclopedia.
Per the compactness criteria for Euclidean space as stated in the Heine–Borel theorem, the interval A = (−∞, −2] is not compact because it is not bounded. The interval C = (2, 4) is not compact because it is not closed (but bounded). The interval B = [0, 1] is compact because it is both closed and bounded.

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space.[1] The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the

extended real number line would be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces
.

One such generalization is that a topological space is

infinite sequence of points sampled from the space has an infinite subsequence that converges to some point of the space.[2] The Bolzano–Weierstrass theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the closed unit interval
[0, 1], some of those points will get arbitrarily close to some real number in that space. For instance, some of the numbers in the sequence 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, ... accumulate to 0 (while others accumulate to 1). Since neither 0 nor 1 are members of the open unit interval (0, 1), those same sets of points would not accumulate to any point of it, so the open unit interval is not compact. Although subsets (subspaces) of Euclidean space can be compact, the entire space itself is not compact, since it is not bounded. For example, considering (the real number line), the sequence of points 0,  1,  2,  3, ... has no subsequence that converges to any real number.

Compactness was formally introduced by

Maurice Fréchet in 1906 to generalize the Bolzano–Weierstrass theorem from spaces of geometrical points to spaces of functions. The Arzelà–Ascoli theorem and the Peano existence theorem exemplify applications of this notion of compactness to classical analysis. Following its initial introduction, various equivalent notions of compactness, including sequential compactness and limit point compactness, were developed in general metric spaces.[3] In general topological spaces, however, these notions of compactness are not necessarily equivalent. The most useful notion — and the standard definition of the unqualified term compactness — is phrased in terms of the existence of finite families of open sets that "cover" the space in the sense that each point of the space lies in some set contained in the family. This more subtle notion, introduced by Pavel Alexandrov and Pavel Urysohn in 1929, exhibits compact spaces as generalizations of finite sets. In spaces that are compact in this sense, it is often possible to patch together information that holds locally
– that is, in a neighborhood of each point – into corresponding statements that hold throughout the space, and many theorems are of this character.

The term compact set is sometimes used as a synonym for compact space, but also often refers to a compact subspace of a topological space.

Historical development

In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand,

limit point
. Bolzano's proof relied on the
method of bisection
: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts – until it closes down on the desired limit point. The full significance of Bolzano's theorem, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by Karl Weierstrass.[4]

In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and Cesare Arzelà.[5] The culmination of their investigations, the Arzelà–Ascoli theorem, was a generalization of the Bolzano–Weierstrass theorem to families of continuous functions, the precise conclusion of which was that it was possible to extract a uniformly convergent sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of integral equations, as investigated by David Hilbert and Erhard Schmidt. For a certain class of

mean convergence – or convergence in what would later be dubbed a Hilbert space. This ultimately led to the notion of a compact operator
as an offshoot of the general notion of a compact space. It was
Maurice Fréchet who, in 1906, had distilled the essence of the Bolzano–Weierstrass property and coined the term compactness to refer to this general phenomenon (he used the term already in his 1904 paper[6]
which led to the famous 1906 thesis).

However, a different notion of compactness altogether had also slowly emerged at the end of the 19th century from the study of the continuum, which was seen as fundamental for the rigorous formulation of analysis. In 1870,

uniformly continuous
. In the course of the proof, he made use of a lemma that from any countable cover of the interval by smaller open intervals, it was possible to select a finite number of these that also covered it. The significance of this lemma was recognized by Émile Borel (1895), and it was generalized to arbitrary collections of intervals by Pierre Cousin (1895) and Henri Lebesgue (1904). The Heine–Borel theorem, as the result is now known, is another special property possessed by closed and bounded sets of real numbers.

This property was significant because it allowed for the passage from

sequential compactness
, under appropriate conditions followed from the version of compactness that was formulated in terms of the existence of finite subcovers. It was this notion of compactness that became the dominant one, because it was not only a stronger property, but it could be formulated in a more general setting with a minimum of additional technical machinery, as it relied only on the structure of the open sets in a space.

Basic examples

Any finite space is compact; a finite subcover can be obtained by selecting, for each point, an open set containing it. A nontrivial example of a compact space is the (closed) unit interval [0,1] of real numbers. If one chooses an infinite number of distinct points in the unit interval, then there must be some accumulation point among these points in that interval. For instance, the odd-numbered terms of the sequence 1, 1/2, 1/3, 3/4, 1/5, 5/6, 1/7, 7/8, ... get arbitrarily close to 0, while the even-numbered ones get arbitrarily close to 1. The given example sequence shows the importance of including the boundary points of the interval, since the limit points must be in the space itself — an open (or half-open) interval of the real numbers is not compact. It is also crucial that the interval be bounded, since in the interval [0,∞), one could choose the sequence of points 0, 1, 2, 3, ..., of which no sub-sequence ultimately gets arbitrarily close to any given real number.

In two dimensions, closed disks are compact since for any infinite number of points sampled from a disk, some subset of those points must get arbitrarily close either to a point within the disc, or to a point on the boundary. However, an open disk is not compact, because a sequence of points can tend to the boundary – without getting arbitrarily close to any point in the interior. Likewise, spheres are compact, but a sphere missing a point is not since a sequence of points can still tend to the missing point, thereby not getting arbitrarily close to any point within the space. Lines and planes are not compact, since one can take a set of equally-spaced points in any given direction without approaching any point.

Definitions

Various definitions of compactness may apply, depending on the level of generality. A subset of

sequential compactness and limit point compactness, can be developed in general metric spaces.[3]

In contrast, the different notions of compactness are not equivalent in general topological spaces, and the most useful notion of compactness – originally called bicompactness – is defined using covers consisting of open sets (see Open cover definition below). That this form of compactness holds for closed and bounded subsets of Euclidean space is known as the

uniformly continuous
; here, continuity is a local property of the function, and uniform continuity the corresponding global property.

Open cover definition

Formally, a

subcover.[7] That is, X is compact if for every collection C of open subsets[8]
of X such that

there is a finite subcollection FC such that

Some branches of mathematics such as algebraic geometry, typically influenced by the French school of Bourbaki, use the term quasi-compact for the general notion, and reserve the term compact for topological spaces that are both Hausdorff and quasi-compact. A compact set is sometimes referred to as a compactum, plural compacta.

Compactness of subsets

A subset K of a topological space X is said to be compact if it is compact as a subspace (in the subspace topology). That is, K is compact if for every arbitrary collection C of open subsets of X such that

there is a finite subcollection FC such that

Compactness is a topological property. That is, if , with subset Z equipped with the subspace topology, then K is compact in Z if and only if K is compact in Y.

Characterization

If X is a topological space then the following are equivalent:

  1. X is compact; i.e., every
    subcover
    .
  2. X has a sub-base such that every cover of the space, by members of the sub-base, has a finite subcover (
    Alexander's sub-base theorem
    ).
  3. X is
    countably compact.[9]
  4. Any collection of closed subsets of X with the finite intersection property has nonempty intersection.
  5. Every net on X has a convergent subnet (see the article on nets for a proof).
  6. Every filter on X has a convergent refinement.
  7. Every net on X has a cluster point.
  8. Every filter on X has a cluster point.
  9. Every
    ultrafilter
    on X converges to at least one point.
  10. Every infinite subset of X has a
    complete accumulation point.[10]
  11. For every topological space Y, the projection is a ).
  12. Every open cover linearly ordered by subset inclusion contains X.[12]

Bourbaki defines a compact space (quasi-compact space) as a topological space where each filter has a cluster point (i.e., 8. in the above).[13]

Euclidean space

For any subset A of Euclidean space, A is compact if and only if it is closed and bounded; this is the Heine–Borel theorem.

As a Euclidean space is a metric space, the conditions in the next subsection also apply to all of its subsets. Of all of the equivalent conditions, it is in practice easiest to verify that a subset is closed and bounded, for example, for a closed interval or closed n-ball.

Metric spaces

For any metric space (X, d), the following are equivalent (assuming

countable choice
):

  1. (X, d) is compact.
  2. (X, d) is
    totally bounded (this is also equivalent to compactness for uniform spaces).[14]
  3. (X, d) is sequentially compact; that is, every ).
  4. (X, d) is
    limit point
    in X.
  5. (X, d) is
    countably compact
    ; that is, every countable open cover of X has a finite subcover.
  6. (X, d) is an image of a continuous function from the Cantor set.[15]
  7. Every decreasing nested sequence of nonempty closed subsets S1S2 ⊇ ... in (X, d) has a nonempty intersection.
  8. Every increasing nested sequence of proper open subsets S1S2 ⊆ ... in (X, d) fails to cover X.

A compact metric space (X, d) also satisfies the following properties:

  1. Lebesgue's number lemma: For every open cover of X, there exists a number δ > 0 such that every subset of X of diameter < δ is contained in some member of the cover.
  2. (X, d) is second-countable, separable and Lindelöf – these three conditions are equivalent for metric spaces. The converse is not true; e.g., a countable discrete space satisfies these three conditions, but is not compact.
  3. X is closed and bounded (as a subset of any metric space whose restricted metric is d). The converse may fail for a non-Euclidean space; e.g. the
    discrete metric is closed and bounded but not compact, as the collection of all singletons
    of the space is an open cover which admits no finite subcover. It is complete but not totally bounded.

Ordered spaces

For an ordered space (X, <) (i.e. a totally ordered set equipped with the order topology), the following are equivalent:

  1. (X, <) is compact.
  2. Every subset of X has a supremum (i.e. a least upper bound) in X.
  3. Every subset of X has an infimum (i.e. a greatest lower bound) in X.
  4. Every nonempty closed subset of X has a maximum and a minimum element.

An ordered space satisfying (any one of) these conditions is called a complete lattice.

In addition, the following are equivalent for all ordered spaces (X, <), and (assuming

countable choice
) are true whenever (X, <) is compact. (The converse in general fails if (X, <) is not also metrizable.):

  1. Every sequence in (X, <) has a subsequence that converges in (X, <).
  2. Every monotone increasing sequence in X converges to a unique limit in X.
  3. Every monotone decreasing sequence in X converges to a unique limit in X.
  4. Every decreasing nested sequence of nonempty closed subsets S1S2 ⊇ ... in (X, <) has a nonempty intersection.
  5. Every increasing nested sequence of proper open subsets S1S2 ⊆ ... in (X, <) fails to cover X.

Characterization by continuous functions

Let X be a topological space and C(X) the ring of real continuous functions on X. For each pX, the evaluation map given by evp(f) = f(p) is a ring homomorphism. The

completely regular spaces, this is equivalent to every maximal ideal being the kernel of an evaluation homomorphism.[16]
There are pseudocompact spaces that are not compact, though.

In general, for non-pseudocompact spaces there are always maximal ideals m in C(X) such that the residue field C(X)/m is a (

monad
of x0).

Hyperreal definition

A space X is compact if its

ultrapower construction
) has the property that every point of *X is infinitely close to some point of X*X. For example, an open real interval X = (0, 1) is not compact because its hyperreal extension *(0,1) contains infinitesimals, which are infinitely close to 0, which is not a point of X.

Sufficient conditions

Properties of compact spaces

  • A compact subset of a Hausdorff space X is closed.
    • If X is not Hausdorff then a compact subset of X may fail to be a closed subset of X (see footnote for example).[b]
    • If X is not Hausdorff then the closure of a compact set may fail to be compact (see footnote for example).[c]
  • In any
    complete
    . However, every non-Hausdorff TVS contains compact (and thus complete) subsets that are not closed.
  • If A and B are disjoint compact subsets of a Hausdorff space X, then there exist disjoint open sets U and V in X such that AU and BV.
  • A continuous bijection from a compact space into a Hausdorff space is a homeomorphism.
  • A compact Hausdorff space is normal and regular.
  • If a space X is compact and Hausdorff, then no finer topology on X is compact and no coarser topology on X is Hausdorff.
  • If a subset of a metric space (X, d) is compact then it is d-bounded.

Functions and compact spaces

Since a

continuous image of a compact space is compact, the extreme value theorem holds for such spaces: a continuous real-valued function on a nonempty compact space is bounded above and attains its supremum.[20]
(Slightly more generally, this is true for an upper semicontinuous function.) As a sort of converse to the above statements, the pre-image of a compact space under a proper map is compact.

Compactifications

Every topological space X is an open

dense subspace of a compact space having at most one point more than X, by the Alexandroff one-point compactification
. By the same construction, every
locally compact
Hausdorff space X is an open dense subspace of a compact Hausdorff space having at most one point more than X.

Ordered compact spaces

A nonempty compact subset of the real numbers has a greatest element and a least element.

Let X be a simply ordered set endowed with the order topology. Then X is compact if and only if X is a complete lattice (i.e. all subsets have suprema and infima).[21]

Examples

Algebraic examples

See also

Notes

  1. ^ Let X = {a, b} ∪ , U = {a} ∪ , and V = {b} ∪ . Endow X with the topology generated by the following basic open sets: every subset of is open; the only open sets containing a are X and U; and the only open sets containing b are X and V. Then U and V are both compact subsets but their intersection, which is , is not compact. Note that both U and V are compact open subsets, neither one of which is closed.
  2. ^ Let X = {a, b} and endow X with the topology {X, ∅, {a}}. Then {a} is a compact set but it is not closed.
  3. ^ Let X be the set of non-negative integers. We endow X with the particular point topology by defining a subset UX to be open if and only if 0 ∈ U. Then S := {0} is compact, the closure of S is all of X, but X is not compact since the collection of open subsets {{0, x} : xX} does not have a finite subcover.

References

  1. Encyclopaedia Britannica
    . mathematics. Retrieved 2019-11-25 – via britannica.com.
  2. ^ Engelking, Ryszard (1977). General Topology. Warsaw, PL: PWN. p. 266.
  3. ^ a b "Sequential compactness". www-groups.mcs.st-andrews.ac.uk. MT 4522 course lectures. Retrieved 2019-11-25.
  4. ^ Kline 1990, pp. 952–953; Boyer & Merzbach 1991, p. 561
  5. ^ Kline 1990, Chapter 46, §2
  6. ^ Frechet, M. 1904. "Generalisation d'un theorem de Weierstrass". Analyse Mathematique.
  7. ^ Weisstein, Eric W. "Compact Space". Wolfram MathWorld. Retrieved 2019-11-25.
  8. ^ Here, "collection" means "set" but is used because "collection of open subsets" is less awkward than "set of open subsets". Similarly, "subcollection" means "subset".
  9. ^ Howes 1995, pp. xxvi–xxviii.
  10. ^ Kelley 1955, p. 163
  11. ^ Bourbaki 2007, § 10.2. Theorem 1, Corollary 1.
  12. ^ Mack 1967.
  13. ^ Bourbaki 2007, § 9.1. Definition 1.
  14. ^ Arkhangel'skii & Fedorchuk 1990, Theorem 5.3.7
  15. ^ Willard 1970 Theorem 30.7.
  16. ^ Gillman & Jerison 1976, §5.6
  17. ^ Robinson 1996, Theorem 4.1.13
  18. ^ Arkhangel'skii & Fedorchuk 1990, Theorem 5.2.3
  19. ^ Arkhangel'skii & Fedorchuk 1990, Theorem 5.2.2
  20. ^ Arkhangel'skii & Fedorchuk 1990, Corollary 5.2.1
  21. ^ Steen & Seebach 1995, p. 67

Bibliography

External links


This article incorporates material from Examples of compact spaces on

Creative Commons Attribution/Share-Alike License
.