Brunhes–Matuyama reversal

Source: Wikipedia, the free encyclopedia.

The Brunhes–Matuyama reversal, named after

Bernard Brunhes and Motonori Matuyama, was a geologic event, approximately 781,000 years ago, when the Earth's magnetic field last underwent reversal.[1][2] Estimations vary as to the abruptness of the reversal. A 2004 paper estimated that it took over several thousand years;[3] a 2010 paper estimated that it occurred more quickly,[4][5][6] perhaps within a human lifetime;[7] a 2019 paper estimated that the reversal lasted 22,000 years.[8][9]

The apparent duration at any particular location can vary by an order of magnitude, depending on geomagnetic latitude and local effects of non-dipole components of the Earth's field during the transition.[3]

The Brunhes–Matuyama reversal is a marker for the

Middle Pleistocene Subseries at the Chiba section, Japan, which was officially ratified in 2020 by the International Union of Geological Sciences.[10][11]
It is useful in dating ocean sediment cores and subaerially erupted volcanics.

There is a highly speculative theory that connects this reversal event to the large Australasian strewnfield (c. 790,000 years ago),[12] although the causes of the two are almost certainly unconnected and only coincidentally happened around the same time.[citation needed] Adding to the data is the large African Bosumtwi impact event (c. 1.07 million years ago) and the later Jaramillo reversal (c. 1 million years ago), another pair of events which has not gone unnoticed.[13]

See also

References

  1. .
  2. ^ "Global chronostratigraphical correlation table for the last 2.7 million years". International Commission on Stratigraphy. Retrieved 31 March 2014.
  3. ^
    S2CID 4356044
    .
  4. ^ Witze, Alexandra (Sep 2, 2010). "Geomagnetic field flip-flops in a flash". ScienceNews. Archived from the original on 27 September 2012. Retrieved 3 September 2010.
  5. S2CID 4247637. Archived from the original
    (PDF) on 31 July 2010.
  6. .
  7. .
  8. .
  9. ^ Science, Passant; Rabie (August 7, 2019). "Earth's Last Magnetic-Pole Flip Took Much Longer Than We Thought". Space.com. Retrieved August 8, 2019.
  10. ^ "Global Boundary Stratotype Section and Point". International Commission of Stratigraphy. Archived from the original on 15 November 2012. Retrieved 31 March 2014.
  11. PMID 34722119
    .
  12. ^ Glass, B. P., Swincki, M. B., & Zwart, P. A. (1979). "Australasian, Ivory Coast and North American tektite strewnfields – Size, mass and correlation with geomagnetic reversals and other earth events" Lunar and Planetary Science Conference, 10th, Houston, Tex., March 19–23, 1979, pp. 2535–2545.
  13. ^ Glass, B. P., Swincki, M. B., & Zwart, P. A. (1979). "Australasian, Ivory Coast and North American tektite strewnfields - Size, mass and correlation with geomagnetic reversals and other earth events" Lunar and Planetary Science Conference, 10th, Houston, Tex., March 19–23, 1979, p. 2535-2545.

Further reading