Cardiac transient outward potassium current

Source: Wikipedia, the free encyclopedia.
The cardiac action potential has five phases. Ito1 is active during phase 1, causing a fast repolarization of the action potential

The cardiac transient outward potassium current (referred to as Ito1 or Ito

intracellular to the extracellular space
. Ito1 is complemented with Ito2 resulting from Cl ions to form the transient outward current Ito.

Mechanism

Ito1 is rapidly activated and deactivated.[2] It is activated after the fast increase of the membrane potential following the phase 0 of the cardiac action potential. Once activated, (K+) ions from inside the cells flow to the extracellular space. This outward flow of positively charged ions constitutes the Ito1 and causes the transmembrane voltage to decrease. This decrease of the transmembrane potential is known as repolarization. Ito1 is then quickly deactivated, stopping the repolarization and ending the phase 1 of the action potential.

Ito1 is

Kv1.4 (KCNA4) subunits.[2] In addition, several regulatory subunits and pathways modulating the level and biophysical properties of cardiac Ito have been identified.[2]

Ito1 affects the opening of Ca2+ channels during Phase 2 of the Action Potential. As a result, changes in Ito1 modulate changes in the action potential duration.[2]

Role in disease

  • Reduction in Ito1 density is associated with prolonged action potentials and is a common finding in
    cardiac disease .[3]

References