Chalcone

Source: Wikipedia, the free encyclopedia.
Chalcone[1]
Skeletal formula of chalcone
Ball-and-stick model of the chalcone molecule
Names
Preferred IUPAC name
Chalcone[2]
Systematic IUPAC name
(2E)-1,3-Diphenylprop-2-en-1-one
Other names
Chalkone
Benzylideneacetophenone
Phenyl styryl ketone
benzalacetophenone
β-phenylacrylophenone
γ-oxo-α,γ-diphenyl-α-propylene
α-phenyl-β-benzoylethylene.
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
ECHA InfoCard
100.002.119 Edit this at Wikidata
UNII
  • InChI=1S/C15H12O/c16-15(14-9-5-2-6-10-14)12-11-13-7-3-1-4-8-13/h1-12H checkY
    Key: DQFBYFPFKXHELB-UHFFFAOYSA-N checkY
  • InChI=1/C15H12O/c16-15(14-9-5-2-6-10-14)12-11-13-7-3-1-4-8-13/h1-12H
    Key: DQFBYFPFKXHELB-UHFFFAOYAP
  • O=C(C=Cc1ccccc1)c2ccccc2
Properties
C15H12O
Molar mass 208.260 g·mol−1
Appearance pale yellow solid
Density 1.071 g/cm3
Melting point 55 to 57 °C (131 to 135 °F; 328 to 330 K)
Boiling point 345 to 348 °C (653 to 658 °F; 618 to 621 K)
-125.7·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Chalcone is the

α,β-unsaturated ketone. A variety of important biological compounds are known collectively as chalcones or chalconoids.[3]
They are widely known bioactive substances, fluorescent materials, and chemical intermediates.

Chemical properties

Chalcones have two absorption maxima at 280 nm and 340 nm.[4]

Biosynthesis

Chalcones and

chalconoids are synthesized in plants as secondary metabolites. The enzyme chalcone synthase, a type III polyketide synthase, is responsible for the biosynthesis of these compounds. The enzyme is found in all "higher" (vascular) and several "lower" (non-vascular) plants.[5]

Laboratory synthesis

Chalcone is usually prepared by an aldol condensation between benzaldehyde and acetophenone.[6]

preparation of chalcone

This reaction, which can be carried out without any solvent, is so reliable that it is often given as an example of green chemistry in undergraduate education.[7]

Potential pharmacology

Chalcones and their derivatives demonstrate a wide range of biological activities including anti-inflammation.

privileged scaffold.[5]

Uses

Medicinal uses

In medicinal chemistry, chalcones have been used as:

Industrial uses

In chemical industries, they are employed as:

Uses in organic chemistry

Chalcones have been used as intermediates in heterocyclic synthesis, especially in the synthesis of pyrazoles and aurones.[12]

See also

References

External links