Chan–Lam coupling

Source: Wikipedia, the free encyclopedia.
Chan-Lam coupling
Named after Dominic Chan
Patrick Lam
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal chan-lam-coupling
RSC ontology ID RXNO:0000374

The Chan–Lam coupling reaction – also known as the Chan–Evans–Lam coupling is a

Buchwald–Hartwig coupling relies on the use of palladium
.

History

Dominic Chan, David Evans, and Patrick Lam published their work nearly simultaneously.[2][3][4][5][6] The mechanism however remained uncertain for many years. Later developments by others extended the scope to include using carboxylic acids, giving aryl-ester products.[7]

Mechanism

Analysis of the mechanism is complicated by the lability of copper reagents and the multicomponent nature of the reaction.[8] The reaction proceeds via the formation of copper-aryl complexes. A copper(III)-aryl-alkoxide or copper(III)-aryl-amide intermediate undergoes Reductive elimination to give the aryl ether or aryl amine, respectively:

Ar-Cu(III)-NHR-L2 → Ar-NHR + Cu(I)L2
Ar-Cu(III)-OR-L2 → Ar-OR + Cu(I)L2

Example

An example of the Chan–Lam coupling to synthesize biologically active compounds is shown below:

Reaction example of Chan–Lam coupling
Reaction example of Chan–Lam coupling

Compound 1, a pyrrole, is coupled with aryl boronic acid, 2, to afford product 3, which is then carried forward to the target 4. The

nitrile group of 2 does not poison the catalyst. Pyridine
is the ligand used for the reaction. Although the reaction requires three days, it was carried out at room temperature in ambient air and resulted in a 93% yield.

Further reading

References