Commensurability (group theory)

Source: Wikipedia, the free encyclopedia.

In

normalizer
.

Commensurability in group theory

Two

index such that H1 is isomorphic to H2.[1]
For example:

A different but related notion is used for subgroups of a given group. Namely, two subgroups Γ1 and Γ2 of a group G are said to be commensurable if the intersection Γ1 ∩ Γ2 is of finite index in both Γ1 and Γ2. Clearly this implies that Γ1 and Γ2 are abstractly commensurable.

Example: for nonzero real numbers a and b, the subgroup of R generated by a is commensurable with the subgroup generated by b if and only if the real numbers a and b are commensurable, meaning that a/b belongs to the rational numbers Q.

In geometric group theory, a finitely generated group is viewed as a metric space using the word metric. If two groups are (abstractly) commensurable, then they are quasi-isometric.[3] It has been fruitful to ask when the converse holds.

There is an analogous notion in linear algebra: two linear subspaces S and T of a vector space V are commensurable if the intersection ST has finite codimension in both S and T.

In topology

Two

homotopy equivalences or diffeomorphisms instead of homeomorphisms in the definition. By the relation between covering spaces and the fundamental group
, commensurable spaces have commensurable fundamental groups.

Example: the Gieseking manifold is commensurable with the complement of the figure-eight knot; these are both noncompact hyperbolic 3-manifolds of finite volume. On the other hand, there are infinitely many different commensurability classes of compact hyperbolic 3-manifolds, and also of noncompact hyperbolic 3-manifolds of finite volume.[4]

The commensurator

The commensurator of a subgroup Γ of a group G, denoted CommG(Γ), is the set of elements g of G that such that the conjugate subgroup gΓg−1 is commensurable with Γ.[5] In other words,

This is a subgroup of G that contains the

normalizer
NG(Γ) (and hence contains Γ).

For example, the commensurator of the

arithmetic subgroup of G.[6]

The abstract commensurator

The abstract commensurator of a group , denoted Comm, is the group of equivalence classes of isomorphisms , where and are finite index subgroups of , under composition.[7] Elements of are called commensurators of .

If is a connected

semisimple Lie group
not isomorphic to , with trivial center and no compact factors, then by the Mostow rigidity theorem, the abstract commensurator of any irreducible lattice is linear. Moreover, if is arithmetic, then Comm is virtually isomorphic to a dense subgroup of , otherwise Comm is virtually isomorphic to .

Notes

  1. ^ Druțu & Kapovich (2018), Definition 5.13.
  2. ^ Druțu & Kapovich (2018), Proposition 7.80.
  3. ^ Druțu & Kapovich (2018), Corollary 8.47.
  4. ^ Maclachlan & Reid (2003), Corollary 8.4.2.
  5. ^ Druțu & Kapovich (2018), Definition 5.17.
  6. ^ Margulis (1991), Chapter IX, Theorem B.
  7. ^ Druțu & Kapovich (2018), Section 5.2.

References

  • Maclachlan, Colin; Reid, Alan W. (2003), The Arithmetic of Hyperbolic 3-Manifolds,