Constructible polygon

Source: Wikipedia, the free encyclopedia.
Construction of a regular pentagon

In

odd number
of sides are known.

Conditions for constructibility

Number of sides of known constructible polygons having up to 1000 sides (bold) or odd side count (red)
Construction of the regular 17-gon

Some regular polygons are easy to construct with compass and straightedge; others are not. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides,[1]: p. xi  and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.[1]: pp. 49–50  This led to the question being posed: is it possible to construct all regular polygons with compass and straightedge? If not, which n-gons (that is, polygons with n edges) are constructible and which are not?

necessary,[2]
but never published his proof.

A full proof of necessity was given by

Fermat primes
. Here, a power of 2 is a number of the form , where m ≥ 0 is an integer. A Fermat prime is a
prime number of the form , where m ≥ 0 is an integer. The number of Fermat primes involved can be 0, in which case n is a power of 2.

In order to reduce a

cosine
is a
root of the nth cyclotomic polynomial
is constructible.

Detailed results by Gauss's theory

Restating the Gauss–Wantzel theorem:

A regular n-gon is constructible with straightedge and compass if and only if n = 2kp1p2...pt where k and t are non-negative integers, and the pi's (when t > 0) are distinct Fermat primes.

The five known

Fermat primes
are:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537 (sequence A019434 in the OEIS).

Since there are 31 nonempty subsets of the five known Fermat primes, there are 31 known constructible polygons with an odd number of sides.

The next twenty-eight Fermat numbers, F5 through F32, are known to be composite.[3]

Thus a regular n-gon is constructible if

n =
120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285, 1360, 1536, 1542, 1632, 1920, 2040, 2048, ... (sequence A003401 in the OEIS
),

while a regular n-gon is not constructible with compass and straightedge if

n =
100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, ... (sequence A004169 in the OEIS
).

Connection to Pascal's triangle

Since there are 5 known Fermat primes, we know of 31 numbers that are products of distinct Fermat primes, and hence 31 constructible odd-sided regular polygons. These are 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535,

John Conway commented in The Book of Numbers, these numbers, when written in binary, are equal to the first 32 rows of the modulo-2 Pascal's triangle, minus the top row, which corresponds to a monogon. (Because of this, the 1s in such a list form an approximation to the Sierpiński triangle
.) This pattern breaks down after this, as the next Fermat number is composite (4294967297 = 641 × 6700417), so the following rows do not correspond to constructible polygons. It is unknown whether any more Fermat primes exist, and it is therefore unknown how many odd-sided constructible regular polygons exist. In general, if there are q Fermat primes, then there are 2q−1 odd-sided regular constructible polygons.

General theory

In the light of later work on

quadratic extensions. It follows that a field generated by constructions will always have degree
over the base field that is a power of two.

In the specific case of a regular n-gon, the question reduces to the question of constructing a length

cos 2π/n ,

which is a

dimension

½ φ(n),

where φ(n) is Euler's totient function. Wantzel's result comes down to a calculation showing that φ(n) is a power of 2 precisely in the cases specified.

As for the construction of Gauss, when the Galois group is a 2-group it follows that it has a sequence of subgroups of orders

1, 2, 4, 8, ...

that are nested, each in the next (a

roots of unity
, one that is a sum of four roots of unity, and one that is the sum of two, which is

cos 2π/17 .

Each of those is a root of a quadratic equation in terms of the one before. Moreover, these equations have real rather than complex roots, so in principle can be solved by geometric construction: this is because the work all goes on inside a totally real field.

In this way the result of Gauss can be understood in current terms; for actual calculation of the equations to be solved, the periods can be squared and compared with the 'lower' periods, in a quite feasible algorithm.

Compass and straightedge constructions

coprime
, an n-gon can be constructed from a p-gon and a q-gon.

  • If p = 2, draw a q-gon and bisect one of its central angles. From this, a 2q-gon can be constructed.
  • If p > 2, inscribe a p-gon and a q-gon in the same circle in such a way that they share a vertex. Because p and q are coprime, there exists integers a and b such that ap + bq = 1. Then 2aπ/q + 2bπ/p = 2π/pq. From this, a pq-gon can be constructed.

Thus one only has to find a compass and straightedge construction for n-gons where n is a Fermat prime.

Gallery


From left to right, constructions of a 15-gon, 17-gon, 257-gon and 65537-gon. Only the first stage of the 65537-gon construction is shown; the constructions of the 15-gon, 17-gon, and 257-gon are given completely.

Other constructions

The concept of constructibility as discussed in this article applies specifically to

compass and straightedge constructions. More constructions become possible if other tools are allowed. The so-called neusis constructions
, for example, make use of a marked ruler. The constructions are a mathematical idealization and are assumed to be done exactly.

A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if where r, s, k ≥ 0 and where the pi are distinct Pierpont primes greater than 3 (primes of the form [8]: Thm. 2  These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons that can be constructed with paper folding. The first numbers of sides of these polygons are:

3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 45, 48, 51, 52, 54, 56, 57, 60, 63, 64, 65, 68, 70, 72, 73, 74, 76, 78, 80, 81, 84, 85, 90, 91, 95, 96, 97, 102, 104, 105, 108, 109, 111, 112, 114, 117, 119, 120, 126, 128, 130, 133, 135, 136, 140, 144, 146, 148, 152, 153, 156, 160, 162, 163, 168, 170, 171, 180, 182, 185, 189, 190, 192, 193, 194, 195, 204, 208, 210, 216, 218, 219, 221, 222, 224, 228, 234, 238, 240, 243, 247, 252, 255, 256, 257, 259, 260, 266, 270, 272, 273, 280, 285, 288, 291, 292, 296, ... (sequence A122254 in the OEIS)

See also

References

  1. ^ a b Bold, Benjamin. Famous Problems of Geometry and How to Solve Them, Dover Publications, 1982 (orig. 1969).
  2. ^ Gauss, Carl Friedrich (1966). Disquisitiones arithmeticae. New Haven and London: Yale University Press. pp. 458–460. Retrieved 25 January 2023.
  3. ^ Prime factors k · 2n + 1 of Fermat numbers Fm and complete factoring status by Wilfrid Keller.
  4. .
  5. ^ Magnus Georg Paucker (1822). "Geometrische Verzeichnung des regelmäßigen Siebzehn-Ecks und Zweyhundersiebenundfünfzig-Ecks in den Kreis". Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst (in German). 2: 160–219.
  6. S2CID 199545940
    .
  7. ^ Johann Gustav Hermes (1894). "Über die Teilung des Kreises in 65537 gleiche Teile". Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (in German). 3. Göttingen: 170–186.
  8. JSTOR 2323624
    .

External links