Cylindric algebra

Source: Wikipedia, the free encyclopedia.

In

quantification and equality. They differ from polyadic algebras
in that the latter do not model equality.

Definition of a cylindric algebra

A cylindric algebra of dimension (where is any ordinal number) is an algebraic structure such that is a Boolean algebra, a unary operator on for every (called a cylindrification), and a distinguished element of for every and (called a diagonal), such that the following hold:

(C1)
(C2)
(C3)
(C4)
(C5)
(C6) If , then
(C7) If , then

Assuming a presentation of first-order logic without function symbols, the operator models existential quantification over variable in formula while the operator models the equality of variables and . Hence, reformulated using standard logical notations, the axioms read as

(C1)
(C2)
(C3)
(C4)
(C5)
(C6) If is a variable different from both and , then
(C7) If and are different variables, then

Cylindric set algebras

A cylindric set algebra of dimension is an algebraic structure such that is a field of sets, is given by , and is given by .[1] It necessarily validates the axioms C1–C7 of a cylindric algebra, with instead of , instead of , set complement for complement, empty set as 0, as the unit, and instead of . The set X is called the base.

A representation of a cylindric algebra is an

example needed] It is easier to connect the semantics of first-order predicate logic with cylindric set algebra. (For more details, see § Further reading
.)

Generalizations

Cylindric algebras have been generalized to the case of many-sorted logic (Caleiro and Gonçalves 2006), which allows for a better modeling of the duality between first-order formulas and terms.

Relation to monadic Boolean algebra

When and are restricted to being only 0, then becomes , the diagonals can be dropped out, and the following theorem of cylindric algebra (Pinter 1973):

turns into the axiom

of monadic Boolean algebra. The axiom (C4) drops out (becomes a tautology). Thus monadic Boolean algebra can be seen as a restriction of cylindric algebra to the one variable case.

See also

Notes

  1. ^ Hirsch and Hodkinson p167, Definition 5.16
  2. ^ Hirsch and Hodkinson p168

References

  • Charles Pinter (1973). "A Simple Algebra of First Order Logic". Notre Dame Journal of Formal Logic. XIV: 361–366.
  • .
  • Leon Henkin, J. Donald Monk, and Alfred Tarski (1985) Cylindric Algebras, Part II. North-Holland.
  • Robin Hirsch and Ian Hodkinson (2002) Relation algebras by games Studies in logic and the foundations of mathematics, North-Holland
  • Carlos Caleiro, Ricardo Gonçalves (2006). "On the algebraization of many-sorted logics" (PDF). In J. Fiadeiro and P.-Y. Schobbens (ed.). Proc. 18th int. conf. on Recent trends in algebraic development techniques (WADT). LNCS. Vol. 4409. Springer. pp. 21–36. .

Further reading

External links