Cytolethal distending toxin
Cytolethal distending toxin | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() Crystal structure of the fully assembled Haemophilus ducreyi cytolethal distending toxin | |||||||||
Identifiers | |||||||||
Symbol | CDT | ||||||||
Pfam | PF03498 | ||||||||
Pfam clan | CL0066 | ||||||||
InterPro | IPR003558 | ||||||||
|
Cytolethal distending toxins (abbreviated CDTs) are a class of
Each toxin consists of three distinct subunits named alphabetically in the order that their coding genes appear in the cdt
Cytolethal distending toxins are produced by
History
The first recorded observation of a cytolethal-distending toxin was in 1987 in a pathogenic strain in The discovery of other bacteria producing CDT toxins continues to this day.
In 1994 Scott and Kaper cloned and sequenced a cdt operon from another E. coli strain, publishing in Infection and Immunity.[1][5] The three genes discovered were denoted cdtA, cdtB, and cdtC.[5]
In 1997, the first paper of many to show G2/M cell cycle arrest caused by a cytolethal distending toxin was published in
The discovery of the
Sources
All known cytolethal distending toxins are produced by gram-negative bacteria in the
- Haemophilus ducreyi (chancroids)
- periodontitis)
- Escherichia coli (various diseases)
- Shigella dysenteriae (dysentery)
- Salmonella enterica serotype Typhi (typhoid fever)
- Campylobacter upsaliensis (enterocolitis)
- Campylobacter jejuni (enterocolitis)
CDT-producing bacteria are often associated with mucosal linings, such as those in the stomach and intestines, and with persistent infections. The toxins are either secreted freely or associated with the membrane of the producing bacteria.[1]
Nomenclature
Individual cytolethal distending toxins are named for the bacterial species that they are isolated from. As of 2011, most scientists have adopted the practice of placing the first letter of both the genus and species in front of the toxin name to reflect its source (i.e., the CDT from Haemaphilus ducreyi is referred to as HdCDT).[1][7] If several subspecies produce different toxins, as in the case of E. coli, Roman numerals may be added after the second letter.[7] Both complete toxins and individual subunits are labeled using this convention.
In response to the continued discovery of additional cytolethal distending toxins, a 2011 review has proposed that the toxin names be expanded to include the first three letters of the species (i.e., HducCDT for Haemaphilus ducreyi CDT).[1]
Cellular effects
CDT toxins are
In many
In
Toxin structure
The active, assembled toxin is a tripartite structure with three distinct subunits- CdtA, CdtB, and CdtC. In terms of function, it is an AB toxin. In this context, the CdtB subunit is actually the catalytically active "A" subunit, and the CdtA and CdtC together form the binding "B" subunit, which helps the toxin bind and enter target cells.[6] Some literature refers to the toxin structure as AB2 to reflect the presence of both CdtA and CdtC.
Different from all other CDTs, Salmonella enterica serovar Typhi CDT (SeCDT) has no CdtA and CdtC homologues. However, encoded closely to the active subunit cdtb, the Pertussis-like toxin A and B (pltA/pltB) have been shown to be essential for cellular intoxication.[10] PltA and PltB have a different structure from CdtA and CdtC, thus promoting CdtB activity in a different way. Both PltA and PltB have been found to bind directly to CdtB in vitro.[10] In addition, different from all other CDTs, Salmonella genotoxin is produced only upon bacterial internalization in infected cells, thus the SeCDT traffic may differ remarkably from the canonical ones.
CdtB
CdtB is considered the active subunit of the CDT holotoxin. Microinjection of CdtB into susceptible cells without CdtA or CdtC results in the G2/M cell cycle arrest and cytoplasmic distension characteristic of CDT toxins.[2] The structure of CdtB is well-conserved between different bacteria. The CdtB subunit is the most sequentially conserved between species.[4] The molecular weight of CdtB ranges from 28 kDa to 29 kDa, depending on the species.[1]
As the active subunit, CdtB is termed the "A" subunit according to the AB toxin model.[1] This confusing nomenclature is due to the naming of the toxin's subunits before their individual functions were understood.
Activity
CdtB exhibits at least two enzymatic activities-
Similarities to mammalian DNase I
CdtB is functionally
CdtA and CdtC
CdtA and CdtC make up the B subunit of the CDT holotoxin responsible for targeting the CdtB against susceptible cells.[6] Neither subunit appears highly conserved, with sequence identities between different species often lower than 30%.[4] The molecular weight of CdtA ranges from 23 kDa to 30 kDa, whereas CdtC ranges from 19 kDa to 21 kDa depending on the species.[1]
Activity
CdtA and CdtC are both believed to bind to the surface of target cells. The exact mechanism of this binding is unclear, and may not be conserved between CDT toxins from different species.[1][11] Proposed targets of CdtA and CdtC binding have included cholesterol, N-linked glycans, and glycosphingolipids.[11] Current research has produced conflicting results on the actual importance of these proposed targets.[1][11] Both CdtA and CdtC contain lectin domains,[12] suggesting that the toxin may bind via carbohydrates on the target cell's surface, whereas other research has suggested that the targets are surface proteins.[1]
Notes
- ^ PMID 21565933.
- ^ S2CID 10087538.
- ^ a b c Dreyfus, Lawrence A. (2003), "Cyotlethal Distending Toxin", in D. Burns; et al. (eds.), Bacterial Protein Toxins, Washington, DC: ASM Press, pp. 257–270
- ^ PMID 22069704.
- ^ a b
Scott DA, Kaper JB (January 1994). "Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin". Infection and Immunity. 62 (1): 244–51. PMID 8262635.
- ^ a b c
Lara-Tejero M, Galán JE (July 2001). "CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity". Infection and Immunity. 69 (7): 4358–65. PMID 11401974.
- ^ PMID 11595635.
- ^ a b c d e
Bruce J. Shenker; Mensur Dlakic; Lisa P. Walker; Dave Besack; Eileen Jaffe; Ed LaBelle; Kathleen Boesze-Battaglia (2007). "A Novel Mode of Action for a Microbial-Derived Immunotoxin: The Cytolethal Distending Toxin Subunit B Exhibits Phosphatidylinositol 3,4,5-Triphosphate Phosphatase Activity". The Journal of Immunology. 178 (8): 5099–5108. PMID 17404292.
- PMID 19650831.
- ^ PMID 18191792.
- ^ a b c d e
Eshraghi A, Maldonado-Arocho FJ, Gargi A, Cardwell MM, Prouty MG, Blanke SR, Bradley KA (June 2010). "Cytolethal distending toxin family members are differentially affected by alterations in host glycans and membrane cholesterol". The Journal of Biological Chemistry. 285 (24): 18199–207. PMID 20385557.
- ^
Nesić D, Hsu Y, Stebbins CE (May 2004). "Assembly and function of a bacterial genotoxin". Nature. 429 (6990): 429–33. S2CID 4373500.