de Bruijn–Newman constant

Source: Wikipedia, the free encyclopedia.

The de Bruijn–Newman constant, denoted by Λ and named after Nicolaas Govert de Bruijn and Charles Michael Newman, is a mathematical constant defined via the zeros of a certain function H(λ,z), where λ is a real parameter and z is a complex variable. More precisely,

,

where is the

super-exponentially
decaying function

and Λ is the unique real number with the property that H has only real zeros if and only if λ≥Λ.

The constant is closely connected with Riemann's hypothesis concerning the zeros of the Riemann zeta-function: since the Riemann hypothesis is equivalent to the claim that all the zeroes of H(0, z) are real, the Riemann hypothesis is equivalent to the conjecture that Λ≤0.[1] Brad Rodgers and Terence Tao proved that Λ<0 cannot be true, so Riemann's hypothesis is equivalent to Λ = 0.[2] A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.[3]

History

De Bruijn showed in 1950 that H has only real zeros if λ ≥ 1/2, and moreover, that if H has only real zeros for some λ, H also has only real zeros if λ is replaced by any larger value.[4] Newman proved in 1976 the existence of a constant Λ for which the "if and only if" claim holds; and this then implies that Λ is unique. Newman also conjectured that Λ ≥ 0,[5] which was then proven by Brad Rodgers and Terence Tao in 2018.

Upper bounds

De Bruijn's upper bound of was not improved until 2008, when Ki, Kim and Lee proved , making the inequality strict.[6]

In December 2018, the 15th

Polymath project
improved the bound to .[7][8][9] A manuscript of the Polymath work was submitted to arXiv in late April 2019,[10] and was published in the journal Research In the Mathematical Sciences in August 2019.[11]

This bound was further slightly improved in April 2020 by Platt and Trudgian to .[12]

Historical bounds

Historical lower bounds
Year Lower bound on Λ Authors
1987 −50[13] Csordas, G.; Norfolk, T. S.; Varga, R. S. 
1990 −5[14] te Riele, H. J. J.
1991 −0.0991[15] Csordas, G.; Ruttan, A.; Varga, R. S. 
1993 −5.895×10−9[16] Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S.
2000 −2.7×10−9[17] Odlyzko, A.M.
2011 −1.1×10−11[18] Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick
2018 ≥0[2] Rodgers, Brad; Tao, Terence
Historical upper bounds
Year Upper bound on Λ Authors
1950 ≤ 1/2[4] de Bruijn, N.G.
2008 < 1/2[6] Ki, H.; Kim, Y-O.; Lee, J.
2019 ≤ 0.22[7] Polymath, D.H.J.
2020 ≤ 0.2[12] Platt, D.; Trudgian, T.

References

  1. ^ "The De Bruijn-Newman constant is non-negative". 19 January 2018. Retrieved 2018-01-19. (announcement post)
  2. ^
    ISSN 2050-5086
    .
  3. ].
  4. ^ .
  5. .
  6. ^ ).
  7. ^ a b D.H.J. Polymath (20 December 2018), Effective approximation of heat flow evolution of the Riemann -function, and an upper bound for the de Bruijn-Newman constant (PDF) (preprint), retrieved 23 December 2018
  8. ^ Going below , 4 May 2018
  9. ^ Zero-free regions
  10. ^ Polymath, D.H.J. (2019). "Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant". ].(preprint)
  11. ^ a b Platt, Dave; Trudgian, Tim (2021). "The Riemann hypothesis is true up to 3·1012". Bulletin of the London Mathematical Society. 53 (3): 792–797.
    S2CID 234355998
    .
    (preprint)
  12. .
  13. .
  14. .
  15. . Retrieved June 1, 2012.
  16. .
  17. .

External links