Degasperis–Procesi equation

Source: Wikipedia, the free encyclopedia.

In mathematical physics, the Degasperis–Procesi equation

is one of only two

dispersive PDEs
:

where and b are real parameters (b=3 for the Degasperis–Procesi equation). It was discovered by Degasperis and Procesi in a search for integrable equations similar in form to the Camassa–Holm equation, which is the other integrable equation in this family (corresponding to b=2); that those two equations are the only integrable cases has been verified using a variety of different integrability tests.[1] Although discovered solely because of its mathematical properties, the Degasperis–Procesi equation (with ) has later been found to play a similar role in

water wave theory as the Camassa–Holm equation.[2]

Soliton solutions

Among the solutions of the Degasperis–Procesi equation (in the special case ) are the so-called multipeakon solutions, which are functions of the form

where the functions and satisfy[3]

These ODEs can be solved explicitly in terms of elementary functions, using inverse spectral methods.[4]

When the soliton solutions of the Degasperis–Procesi equation are smooth; they converge to peakons in the limit as tends to zero.[5]

Discontinuous solutions

The Degasperis–Procesi equation (with ) is formally equivalent to the (nonlocal) hyperbolic conservation law

where , and where the star denotes convolution with respect to x. In this formulation, it admits weak solutions with a very low degree of regularity, even discontinuous ones (shock waves).[6] In contrast, the corresponding formulation of the Camassa–Holm equation contains a convolution involving both and , which only makes sense if u lies in the Sobolev space with respect to x. By the

Sobolev embedding theorem
, this means in particular that the weak solutions of the Camassa–Holm equation must be continuous with respect to x.

Notes

References

Further reading