Dieudonné determinant

Source: Wikipedia, the free encyclopedia.

In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by Dieudonné (1943).

If K is a division ring, then the Dieudonné determinant is a

abelianization
K ×/ [K ×, K ×] of the multiplicative group K × of K.

For example, the Dieudonné determinant for a 2-by-2 matrix is the residue class, in K ×/ [K ×, K ×], of

Properties

Let R be a local ring. There is a determinant map from the

unit group R ×ab with the following properties:[1]

Tannaka–Artin problem

Assume that K is finite over its

reduced norm
gives a homomorphism Nn from GLn(K ) to F ×. We also have a homomorphism from GLn(K ) to F × obtained by composing the Dieudonné determinant from GLn(K ) to K ×/ [K ×, K ×] with the reduced norm N1 from GL1(K ) = K × to F × via the abelianization.

The Tannaka–Artin problem is whether these two maps have the same kernel SLn(K ). This is true when F is locally compact[2] but false in general.[3]

See also

  • Moore determinant over a division algebra

References

  1. ^ Rosenberg (1994) p.64
  2. .
  3. .