Discretization error

Source: Wikipedia, the free encyclopedia.

In numerical analysis, computational physics, and simulation, discretization error is the error resulting from the fact that a function of a continuous variable is represented in the computer by a finite number of evaluations, for example, on a lattice. Discretization error can usually be reduced by using a more finely spaced lattice, with an increased computational cost.

Examples

Discretization error is the principal source of error in methods of finite differences and the pseudo-spectral method of computational physics.

When we define the derivative of as or , where is a finitely small number, the difference between the first formula and this approximation is known as discretization error.

In

sampling theorem are satisfied, otherwise the resulting error is called aliasing
.

Discretization error, which arises from finite resolution in the domain, should not be confused with

quantization error, which is finite resolution in the range (values), nor in round-off error arising from floating-point arithmetic. Discretization error would occur even if it were possible to represent the values exactly and use exact arithmetic – it is the error from representing a function by its values at a discrete set of points, not an error in these values.[1]

References

See also