Environmental magnetism

Source: Wikipedia, the free encyclopedia.

Environmental magnetism is the study of

archeology.[1]
The main advantages of using magnetic measurements are that magnetic minerals are almost ubiquitous and magnetic measurements are quick and non-invasive.

History

Environmental magnetism was first identified as a distinct field in 1978 and was introduced to a wider audience by the book Environmental Magnetism in 1986.[2][3] Since then it has grown rapidly, finding application in and making major contributions to a range of diverse fields, especially paleoclimate, sedimentology, paleoceanography, and studies of particulate pollution.[4][5]

Fundamentals

Environmental magnetism is built on two parts of

iron oxides, including magnetite, maghemite, hematite; and iron sulfides (particularly greigite and pyrrhotite). These minerals are strongly magnetic because, at room temperature, they are magnetically ordered (magnetite, maghemite and greigite are ferrimagnets while hematite is a canted antiferromagnet
).

To relate magnetic measurements to the environment, environmental magnetists have identified a variety of processes that give rise to each magnetic mineral. These include

.

Applications

Paleoclimate

Magnetic measurements have been used to investigate past climate. A classic example is the study of

oxygen isotope stages. Ultimately, this work allowed environmental magnetists to map out the variations in the monsoon cycle during the Quaternary.[5] Magnetic measurements of lacustrine sediments can also be used to reconstruct the upland surface processes that were associated with past climate.[8]

See also

Notes

References