Femto-photography

Source: Wikipedia, the free encyclopedia.
Schematic of the active CUSP system for 70-Tfps imaging

Femto-photography is a technique for recording the propagation of ultrashort pulses of light through a scene at a

Universidad de Zaragoza, Spain, more recently achieved a significant increase in image quality using a streak camera synchronized to a pulsed laser and modified to obtain 2D images instead of just a single scanline.[4][5]

In their publications, Raskar's team claims to be able to capture exposures so short that light only traverses 0.6 mm (corresponding to 2 picoseconds, or 2×10−12 seconds) during the exposure period,

TEDGlobal 2012.[10] Furthermore, the team was able to demonstrate the reconstruction of unknown objects "around corners", i.e., outside the line of sight of light source and camera, from femto-photographs.[9]

In 2013, researchers at the University of British Columbia demonstrated a computational technique that allows the extraction of transient images from time-of-flight sensor data without the need for ultrafast light sources or detectors.[11]

Other uses of the term

Prior to the aforementioned work, the term "femto-photography" had been used for certain proposed procedures in experimental nuclear physics.[12]

References

  1. ^
    PMID 19684717
    .
  2. ^ Smith, Adam; James Skorupski; James Davis (2008). "Transient Rendering". Technical Report, School of Engineering, University of California Santa Cruz. UCSC-SOE-08-26. Retrieved 25 February 2023.
  3. S2CID 3167340
    .
  4. . Retrieved 2012-10-04.
  5. . Retrieved 21 November 2013.
  6. .
  7. ^ Hamamatsu Corporation. "Universal Streak Camera C5680 Series - Measurements Ranging From X-Ray to Near Infrared With a Temporal Resolution of 2 ps". Retrieved 2013-11-22.
  8. ^ Information from alldatasheet.com
  9. ^
    S2CID 16770765
    .
  10. ^ TEDGlobal 2012. "Ramesh Raskar: Imaging at a trillion frames per second | Video on". Ted.com. Retrieved 2012-10-04.{{cite web}}: CS1 maint: numeric names: authors list (link)
  11. ^ Heide, Felix; Matthias B. Hullin; James Gregson; Wolfgang Heidrich. "Low-Budget Transient Imaging using Photonic Mixer Devices". In: ACM Trans. Graph. 32(4) (Proc. SIGGRAPH 2013). Retrieved 22 November 2013.
  12. ISBN 9789812382559. Retrieved 4 October 2012. {{cite book}}: |work= ignored (help
    )