Heilmann locomotive

Source: Wikipedia, the free encyclopedia.

The Heilmann locomotives were a series of three experimental steam-electric locomotives produced in the 1890s for the French

diesel-electric locomotives
and various other self powered locomotives.

La Fusée Electrique

La Fusée Electrique
CV (59 to 74 kW; 79 to 99 hp) / traction motor
Sources:[1][2][3]
except *
"Cutaway" view

In 1890,

switches).[5] Heilmann wished to create a machine specifically suited for high-speed trains without the high costs of an electrified infrastructure. His earliest design was of a trainset consisting of a vehicle with a triple expansion steam engine (of 600 hp.[n 1]) and generator (providing 480 hp @ 80% expected efficiency), a tender and three carriages. The entire train was to run on bogies, and use a distributed traction system provided by 12 axle-mounted electric motors in the three carriages.[6]

The first real locomotive built to Heilmann's design was a prototype steam-electric locomotive, with boiler, steam engine, generator and motors built into a single locomotive; construction began in 1892 and was completed in August 1893.[1] On completion it was named Fusée (also known as La Fusée Électrique;[4] English: The Electric Rocket),[7] a reference to the 1830 Stephenson locomotive "Rocket".[8]

The steam engine (designed by

Compagnie de Materiel de Chemins de Fer.[9]

The locomotive had a 600 to 800

corrugated type.[7] It had a grate area of 2.25 square metres (24.2 sq ft). The boiler had a total surface area of 145 square metres (1,560 sq ft).[1] The engine had a fixed cutoff with no reversing mechanism, and no speed governor excluding a centrifugal overspeed safety device.[2]

The steam engine drove directly a direct current dynamo,

CV two cylinder vertical compound steam engine of similar design to the main engine. This secondary generator's output was also used to provide a supply for electric lighting in carriages.[10]

Electric speed and load control was obtained by reducing the main generator's field excitation current coming from the 10 kilowatts (13 hp) dynamo using a twelve step drum

rheostat.[n 2] The eight traction motors were connected in parallel; for low speed control the motors could be series connected in two sets of four connected in parallel.[10][n 3]

The motors were located in two four-axle bogies,

metric horsepower (59 to 74 kW) electric motor;[3] giving a Do-Do wheel arrangement. Braking was by Westinghouse air brakes, with disc brakes fitted on all wheels.[7] The locomotive was a cab forward design.[5]

The first official tests of the locomotive began on 2 February 1894; performing a return working from

batteries between them; the total train weight was 173 to 183 tonnes, depending on passenger levels. Speeds were increased over subsequent runs: the first run average 51.5 kilometres per hour (32.0 mph), on the fourth run the average speed was 59.4 kilometres per hour (36.9 mph), with speeds of 55 kilometres per hour (34 mph) on the 8‰ slopes, and 70 kilometres per hour (43 mph) on level track.[11]

On 9 May 1894, La Fusée Electrique made a trial run from

A 110 scale model of the prototype locomotive made in 1903 is in the collection of the Conservatoire national des arts et métiers, Paris, donated by Heilmann.[5][15]

CF de l'Ouest 8001 and 8002

CF de l'Ouest Nos 8001 and 8002
atm (14.47 kg/cm2; 1,418.55 kPa; 205.74 psi
)
Heating surface:
 • Firebox3.34 m2 (36.0 sq ft)
 • Total surface185.50 m2 (1,996.7 sq ft)
Career
Number in class2

In 1897, two larger locomotives were built. They were numbered 8001 and 8002. The locomotives had standard Belpaire fireboxes,[7] with a grate area of 3.34 square metres (36.0 sq ft).[5] The steam engines were built by Willans & Robinson, Rugby, Warwickshire, United Kingdom.[7] The boiler had a heating area of 185.50 square metres (1,996.7 sq ft) and worked at a pressure of 14 standard atmospheres (210 lbf/in2). The locomotive weighed 124 tonnes (122 long tons). The driving wheels were arranged in two four-axle bogies as per La Fusée. They had a diameter of 1,160 millimetres (3 ft 10 in).[5] The locomotives were 28.35 metres (93 ft 0 in) long, 2.74 metres (9 ft 0 in) wide and 4.19 metres (13 ft 9 in) high.[16] Water capacity was 20,000 litres (4,400 imp gal).[5]

On 12 November 1897, a test run was made between the

Mantes-la-Jolie and return.[17] On 18 November 1897, a 115-kilometre (71 mi) test run was made with speeds kept down to 30 kilometres per hour (19 mph) hauling a 50-tonne (49-long-ton) load. On a later run hauling a 250-tonne (250-long-ton) load, a speed of 100 kilometres per hour (62 mph) was attained.[5]

Although other railway companies, such as the Ohio River, Madison & Southern Railway in the United States and the Southern Railway in Russia, as well as at least one from Germany, showed interest in steam-electric locomotives,

gas turbine and steam turbine locomotives which use an electric transmission.[7] When one of the first diesel-electric locomotives was reported in 1905, the Automotor Journal stated it appears to be something on the Heilmann principle, that is to say the engine is employed to operate a dynamo which in turn supplies electric current to motors geared to the driving wheels.[18]

See also

Notes

  1. ^
    metric horsepower
    , which is ~736W, and not the figure for mechanical horsepower of 746W.
  2. ^ The method of speed control by controlling the generator field excitation (magnetic field in the main generator) is also used in the Ward Leonard motor control system
  3. ^ Ch. Jacquin (1894), "La locomotive électrique Heilmann", p.366, "On se contente de coupler, suivant les besoins, les 8 moteurs electriques soit tous en tension, soit en quantité en 2 groupes de 4 en tension".

References

  1. ^ a b c d Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp.361-364
  2. ^ a b Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp.364-365
  3. ^ a b Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp.367-368
  4. ^ a b Base Palissy: Locomotive thermo-électrique dite la fusée électrique, Ministère français de la Culture. (in French)
  5. ^ a b c d e f g h i j Douglas Self. "The Heilmann Locomotive". Retrieved 9 March 2023.
  6. ^ J.-J. Heilmann (1891), "Un nouveau chemin de fer électrique", Séance du 20 Février 1891 p.105-106
  7. ^ a b c d e f g h i j k Rutherford, Michael. "Export or Die! British Diesel-Electric Manufacturers and Modernisation. Part One: Roots" (PDF). Backtrack (January 2008). Easingwold: Pendragon Publishing: 52–60.
  8. ^ E. Hospitalier (1897), "Nouvelle locomotive électrique de M. J.-J. Heilmann", p.19
  9. ^ Michael C. Duffy (2003), p.43
  10. ^ a b c Ch. Jacquin (1894), "La locomotive électrique Heilmann", pp.365-367
  11. ^ Ch. Jacquin (1894), "La locomotive électrique Heilmann", 470-471, see also M.F. Drouin (1896), Les Locomotives Électriques (Système J.-J. Heilmann), Plate 170, Fig. 5: line gradients
  12. ^ Sources:
  13. ^ a b "Our London Correspondence". Glasgow Herald. No. 112. 10 May 1894. p. 3.
  14. ^ "The Locomotive of the Future". The Pall Mall Gazette. No. 9928. 20 January 1897. p. 3.
  15. ^ Conservatoire national des arts et métiers (1905), "Locomotion et Transports: Locomotives", Catalogue des collections: Premier fascicule: Mécanique, E. Bernard, p. 392, (alternative link)
  16. Glasgow Herald
    . No. 247. 15 October 1897. p. 7.
  17. ^ "France". The Morning Post. No. 39138. 13 November 1897. p. 5.
  18. ^ "The Diesel Engine in a New Sphere", The Automotor and Horseless Carriage Journal, 4 March 1905, p275

Sources

External links