Lehmer's conjecture

Source: Wikipedia, the free encyclopedia.

Lehmer's conjecture, also known as the Lehmer's Mahler measure problem, is a problem in

The conjecture asserts that there is an absolute constant such that every polynomial with integer coefficients satisfies one of the following properties:

  • The Mahler measure[2] of is greater than or equal to .
  • is an integral multiple of a product of cyclotomic polynomials or the monomial , in which case . (Equivalently, every complex root of is a root of unity or zero.)

There are a number of definitions of the Mahler measure, one of which is to factor over as

and then set

The smallest known Mahler measure (greater than 1) is for "Lehmer's polynomial"

for which the Mahler measure is the Salem number[3]

It is widely believed that this example represents the true minimal value: that is, in Lehmer's conjecture.[4][5]

Motivation

Consider Mahler measure for one variable and Jensen's formula shows that if then

In this paragraph denote  , which is also called Mahler measure.

If has integer coefficients, this shows that is an algebraic number so is the logarithm of an algebraic integer. It also shows that and that if then is a product of cyclotomic polynomials i.e. monic polynomials whose all roots are roots of unity, or a monomial polynomial of i.e. a power for some .

Lehmer noticed[1][6] that is an important value in the study of the integer sequences for monic . If does not vanish on the circle then . If does vanish on the circle but not at any root of unity, then the same convergence holds by Baker's theorem (in fact an earlier result of Gelfond is sufficient for this, as pointed out by Lind in connection with his study of quasihyperbolic toral automorphisms[7]).[8] As a result, Lehmer was led to ask

whether there is a constant such that provided is not cyclotomic?,

or

given , are there with integer coefficients for which ?

Some positive answers have been provided as follows, but Lehmer's conjecture is not yet completely proved and is still a question of much interest.

Partial results

Let be an irreducible monic polynomial of degree .

Smyth[9] proved that Lehmer's conjecture is true for all polynomials that are not reciprocal, i.e., all polynomials satisfying .

Blanksby and

Montgomery[10] and Stewart[11]
independently proved that there is an absolute constant such that either or[12]

Dobrowolski[13] improved this to

Dobrowolski obtained the value C ≥ 1/1200 and asymptotically C > 1-ε for all sufficiently large D. Voutier in 1996 obtained C ≥ 1/4 for D ≥ 2.[14]

Elliptic analogues

Let be an elliptic curve defined over a number field , and let be the

canonical height
function. The canonical height is the analogue for elliptic curves of the function . It has the property that if and only if is a
torsion point
in . The elliptic Lehmer conjecture asserts that there is a constant such that

for all non-torsion points ,

where . If the elliptic curve E has complex multiplication, then the analogue of Dobrowolski's result holds:

due to Laurent.[15] For arbitrary elliptic curves, the best known result is

due to Masser.[16] For elliptic curves with non-integral j-invariant, this has been improved to

by Hindry and Silverman.[17]

Restricted results

Stronger results are known for restricted classes of polynomials or algebraic numbers.

If P(x) is not reciprocal then

and this is clearly best possible.[18] If further all the coefficients of P are odd then[19]

For any algebraic number α, let be the Mahler measure of the minimal polynomial of α. If the field Q(α) is a Galois extension of Q, then Lehmer's conjecture holds for .[19]

Relation to structure of compact group automorphisms

The

measure-theoretic entropy of an ergodic automorphism of a compact metrizable abelian group is known to be given by the logarithmic Mahler measure of a polynomial with integer coefficients if it is finite.[20]
As pointed out by Lind, this means that the set of possible values of the entropy of such actions is either all of  or a countable set depending on the solution to Lehmer's problem.
Ornstein's theorem
, this means that the moduli space of all ergodic compact group automorphisms up to measurable isomorphism is either countable or uncountable depending on the solution to Lehmer's problem.

References

External links