Metal–insulator–metal

Source: Wikipedia, the free encyclopedia.

Metal–insulator–metal (MIM)

semiconductor diode and capable of very fast operation. Depending on the geometry and the material used for fabrication, the operation mechanisms are governed either by quantum tunnelling or thermal activation.[1]

In 1948, Torrey et al. stated that "It should be possible to make metal–insulator–metal

tunneling diode with significant responsivity. When they are using tunneling transport, the MIM diode can be very fast. As soon as 1974, this diode was reportedly used as a mixer at 88 THz in a setup of the National Institute of Standards and Technology.[4] Thanks to recent researches the zero-bias responsivity of the MIM diode (15 A/W) is now very close to the one of Schottky diode (19.4 A/W).[5]

Today MIM diode is the cornerstone of the ongoing

nantenna developments. They are also used as thin-film diode by the flat-panel display
manufacturers.

In contrast to MIM diodes, metal–insulator–insulator–metal (MIIM) diodes have two insulator layers.

See also

References

  1. ^ S. Hemour and W. Ke, "Radio-Frequency Rectifier for Electromagnetic Energy Harvesting: Development Path and Future Outlook", Proceedings of the IEEE, vol. 102, pp. 1667–1691, 2014.
  2. .
  3. ^ W. F. Brinkman, R. C. Dynes, and J. M. Rowell, "Tunneling Conductance of Asymmetrical Barriers", Journal of Applied Physics, vol. 41, pp. 1915–1921, 1970.
  4. ^ E. Sakuma and K. Evenson, "Characteristics of tungsten-nickel point contact diodes used as laser harmonic-generator mixers", IEEE Journal of Quantum Electronics, vol. 10, pp. 599–603, 1974.
  5. ^ M. L. Chin, P. Periasamy, T. P. O'Regan, M. Amani, C. Tan, R. P. O'Hayre, et al., "Planar metal-insulator-metal diodes based on the Nb/Nb2O5/X material system", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 31, pp. 051204-1–051204-8, 2013.

External links