Mu problem

Source: Wikipedia, the free encyclopedia.

In theoretical physics, the μ problem is a problem of supersymmetric theories, concerned with understanding the parameters of the theory.

Background

The supersymmetric Higgs mass parameter μ appears as the following term in the superpotential: μ Hu Hd . It is necessary to provide a mass for the fermionic superpartners of the Higgs bosons, i.e. the higgsinos, and it enters as well the scalar potential of the Higgs bosons.

To ensure that Hu and Hd get a non-zero

naturalness
: Why is that scale so much smaller than the cutoff scale? And why, if the μ term in the superpotential has different physical origins, do the corresponding scale happen to fall so close to each other?

Before

soft supersymmetry breaking terms should also be of the same order of magnitude as the electroweak scale. This was negated by the Higgs mass measurements and limits on supersymmetry models.[1]

One proposed solution, known as the Giudice–Masiero mechanism,[2] is that this term does not appear explicitly in the Lagrangian, because it violates some global symmetry, and can therefore be created only via spontaneous breaking of this symmetry. This is proposed to happen together with F-term supersymmetry breaking, with a spurious field X that parameterizes the hidden supersymmetry-breaking sector of the theory (meaning that FX is the non-zero F-term).

Let us assume that the

Kahler potential
includes a term of the form times some dimensionless coefficient, which is naturally of order one, and where Mpl is
Planck mass
. Then as supersymmetry breaks, FX gets a non-zero vacuum expectation value ⟨FX⟩ and the following effective term is added to the superpotential: which gives a measured On the other hand, soft supersymmetry breaking terms are similarly created and also have a natural scale of

See also

References

External links