Superpotential

Source: Wikipedia, the free encyclopedia.

In theoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials have the same spectrum, apart from a possible eigenvalue of zero, meaning that the physical systems represented by the two potentials have the same characteristic energies, apart from a possible zero-energy ground state.

One-dimensional example

Consider a

position with [x,p]=i, where we use natural units
so that . Let W (the superpotential) represent an arbitrary differentiable function of x and define the supersymmetric operators Q1 and Q2 as

The operators Q1 and Q2 are self-adjoint. Let the Hamiltonian be

where W' signifies the derivative of W. Also note that {Q1,Q2}=0. Under these circumstances, the above system is a

partner potentials
determined by

In four spacetime dimensions

In

chiral superfield
, which tends to automatically be complex valued. We may identify the complex conjugate of a chiral superfield as an anti-chiral superfield. There are two possible ways to obtain an action from a set of superfields:

  • Integrate a superfield on the whole superspace spanned by and ,

or

  • Integrate a chiral superfield on the chiral half of a superspace, spanned by and , not on .

The second option tells us that an arbitrary holomorphic function of a set of chiral superfields can show up as a term in a Lagrangian which is invariant under supersymmetry. In this context, holomorphic means that the function can only depend on the chiral superfields, not their complex conjugates. We may call such a function W, the superpotential. The fact that W is holomorphic in the chiral superfields helps explain why supersymmetric theories are relatively tractable, as it allows one to use powerful mathematical tools from complex analysis. Indeed, it is known that W receives no perturbative corrections, a result referred to as the perturbative non-renormalization theorem. Note that non-perturbative processes may correct this, for example through contributions to the beta functions due to instantons.

See also

References

  • Stephen P. Martin, A Supersymmetry Primer. .
  • B. Mielnik and O. Rosas-Ortiz, "Factorization: Little or great algorithm?", J. Phys. A: Math. Gen. 37: 10007-10035, 2004
  • Cooper, Fred; Khare, Avinash; Sukhatme, Uday (1995). "Supersymmetric quantum mechanics". Physics Reports. 251: 267–385. .